Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(33): 20044-20051, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32747534

RESUMO

Carbon and nitrogen isotope ratios in hair sampled from 65 communities across the central and intermountain regions of the United States and more intensively throughout 29 ZIP codes in the Salt Lake Valley, Utah, revealed a dietary divergence related to socioeconomic status as measured by cost of living, household income, and adjusted gross income. Corn-fed, animal-derived proteins were more common in the diets of lower socioeconomic status populations than were plant-derived proteins, with individual estimates of animal-derived protein diets as high as 75%; United States towns and cities averaged 57%. Similar patterns were seen across the socioeconomic status spectrum in the Salt Lake Valley. It is likely that corn-fed animal proteins were associated with concentrated animal-feeding operations, a common practice for industrial animal production in the United States today. Given recent studies highlighting the negative impacts of animal-derived proteins in our diets, hair carbon isotope ratios could provide an approach for scaling assessments of animal-sourced foods and health risks in communities across the United States.


Assuntos
Isótopos de Carbono/análise , Dieta/economia , Proteínas Alimentares/análise , Cabelo/química , Isótopos de Nitrogênio/análise , Animais , Proteínas Alimentares/economia , Proteínas Alimentares/metabolismo , Cabelo/metabolismo , Humanos , Isótopos de Nitrogênio/metabolismo , Classe Social , Estados Unidos , Utah
2.
Rapid Commun Mass Spectrom ; 33(5): 461-472, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30597678

RESUMO

RATIONALE: Strontium isotope ratios (87 Sr/86 Sr) of hair may be a valuable tool to estimate human provenance. However, the systematics and mechanisms controlling spatial variation in 87 Sr/86 Sr of modern human hair remain unclear. Here, we measure 87 Sr/86 Sr of hair specimens from across the USA to assess the presence of geospatial relationships. METHODS: Ninety-eight human hair specimens were collected from salon/barbershop floors in 48 municipalities throughout the conterminous USA. [Sr] and 87 Sr/86 Sr ratios were measured from hair using quadrupole and multi-collector inductively coupled plasma mass spectrometers, respectively. The [Sr] and 87 Sr/86 Sr ratios of hair were compared with the measured [Sr] and 87 Sr/86 Sr ratios of tap waters from the collection locations. In addition, the 87 Sr/86 Sr ratio of hair was compared with the modeled ratios of bedrock and surface waters. RESULTS: Hair color was independent of the 87 Sr/86 Sr ratio, but related to [Sr]. The 87 Sr/86 Sr ratios of hair and leachate were not statistically different and were positively correlated; however, in several hair-leachate pairs, the ratios were conspicuously different. The 87 Sr/86 Sr ratios of both hair and leachate were linearly correlated with tap water. The 87 Sr/86 Sr ratio of hair was also significantly correlated with the modeled ratio of bedrock and surface waters, although the 87 Sr/86 Sr ratio of hair was most strongly correlated with the measured ratio of tap water. CONCLUSIONS: The 87 Sr/86 Sr ratio of hair is related to the ratio of tap water, which varied geographically. The ratio of hair provided geographic information about an individual's recent residence. Differences in the 87 Sr/86 Sr ratios of hair and hair leachate may be concomitant with travel and could potentially be used as a screening tool to identify recent movements.


Assuntos
Água Potável/análise , Cabelo/química , Isótopos de Estrôncio/análise , Água Doce/química , Humanos , Espectrometria de Massas , Estados Unidos
3.
Oecologia ; 187(4): 1053-1075, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29955986

RESUMO

The hydrogen isotope values of n-alkanes (δ2Hn-alkane) reflect a plant's water source and water relations, while the carbon isotope values (δ13Cn-alkane) relate to a plant's carbon metabolism and response to environmental conditions. However, the isotopic dynamics of the transition from heterotrophic to autotrophic metabolism during foliar development on δ2Hn-alkane and δ13Cn-alkane remain unclear. Here, we monitored δ2Hn-alkane and δ13Cn-alkane across a growing season from Betula occidentalis, Populus angustifolia, and Acer negundo. In addition, we compiled δ2H values of atmospheric vapor, leaf water, xylem water, and stream water as well as δ13C values of bulk leaf tissue (δ13Cbulk). We found δ2Hn-alkane and δ13Cn-alkane varied with leaf development and indicated that the majority of wax development occurred during the initial growing season. The patterns in δ2Hn-alkane were broadly consistent between species and with previous studies; however, each species had a unique final δ2Hn-alkane value. The δ13Cbulk for all species demonstrated a characteristic 13C-enrichment during the initial growing season, followed by 13C-depletion, while δ13Cn-alkane did not exhibit a consistent trend between the species. These δ13C data suggested a decoupling of the isotopic inputs between n-alkanes and photosynthetic leaf tissue. When coupled with δ2Hn-alkane, these data suggested that the precursor compounds utilized in initial production of n-alkanes might be variable and possibly indicated that the stored precursors used for initial leaf tissue and wax production originated from different sources. Nonetheless, these data indicated that the isotopic signatures of n-alkanes relate to a mixture of precursors, but only during a distinct period of leaf ontogeny.


Assuntos
Alcanos , Hidrogênio , Isótopos de Carbono , Deutério , Folhas de Planta , Ceras
4.
Oecologia ; 187(4): 1077-1094, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29955984

RESUMO

The heart of forensic science is application of the scientific method and analytical approaches to answer questions central to solving a crime: Who, What, When, Where, and How. Forensic practitioners use fundamentals of chemistry and physics to examine evidence and infer its origin. In this regard, ecological researchers have had a significant impact on forensic science through the development and application of a specialized measurement technique-isotope analysis-for examining evidence. Here, we review the utility of isotope analysis in forensic settings from an ecological perspective, concentrating on work from the Americas completed within the last three decades. Our primary focus is on combining plant and animal physiological models with isotope analyses for source inference. Examples of the forensic application of isotopes-including stable isotopes, radiogenic isotopes, and radioisotopes-span from cotton used in counterfeit bills to anthrax shipped through the U.S. Postal Service and from beer adulterated with cheap adjuncts to human remains discovered in shallow graves. Recent methodological developments and the generation of isotope landscapes, or isoscapes, for data interpretation promise that isotope analysis will be a useful tool in ecological and forensic studies for decades to come.


Assuntos
Ecologia , Isótopos , América , Animais , Ciências Forenses , Humanos , Plantas
5.
Rapid Commun Mass Spectrom ; 31(6): 583-589, 2017 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-28063236

RESUMO

RATIONALE: Oxygen isotope ratios (δ18 O values) of hair largely reflect features of regional hydrology while strontium isotope ratios (87 Sr/86 Sr) are thought to reflect bedrock geology; combination of both isotope signatures may provide greater capacity for determining provenance and reconstructing travel history of an organism. To test this hypothesis, we compared the O-Sr isotope profiles of hair from domestic horses with known residency histories. METHODS: Tail hairs were collected from a pair of horses pastured together for a period of 16 months, one of which lived in a different location for the 8 months prior. Hair samples were washed with solvents to remove external contaminants prior to sequential sampling for δ18 O and 87 Sr/86 Sr analysis via TC/EA-IRMS and MC-ICP-MS, respectively. Hair digests were concentrated and analyzed employing low-flow natural aspiration to measure 87 Sr/86 Sr. RESULTS: Tail hair from the control and transported horses had mean δ18 O values of 11.25 ± 1.62 ‰ and 10.96 ± 1.53 ‰, and mean 87 Sr/86 Sr of 0.7101 ± 0.0006 and 0.7109 ± 0.0020, respectively. The δ18 O and 87 Sr/86 Sr profiles for the control and transported horses were indistinguishable when they were pastured together. The 87 Sr/86 Sr profiles were significantly different during the period that the horses were living apart, while the δ18 O values were indistinguishable during that period. CONCLUSIONS: By comparing the O-Sr isotope profiles of a control and transported horse, we investigated isotopic signal(s) potentially useful for reconstructing travel histories via high-resolution sequential sampling along single strands of tail hair. Improved analytical capabilities allowed for extremely low Sr abundance samples to be analyzed for 87 Sr/86 Sr and proved capable of resolving a horse's movement between distinct regions. Copyright © 2017 John Wiley & Sons, Ltd.


Assuntos
Cabelo/química , Espectrometria de Massas/métodos , Isótopos de Oxigênio/análise , Isótopos de Estrôncio/análise , Animais , Isótopos de Carbono/análise , Cavalos , Viagem
6.
Proc Natl Acad Sci U S A ; 110(7): 2659-64, 2013 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-23359675

RESUMO

Leaf-wax n-alkanes (2)H/(1)H ratios are widely used as a proxy in climate reconstruction. Although the broad nature of the relationship between n-alkanes δ(2)H values and climate is appreciated, the quantitative details of the proxy remain elusive. To examine these details under natural environmental conditions, we studied a riparian broadleaf angiosperm species, Populus angustifolia, growing on water with a constant δ(2)H value and monitored the δ(2)H values of leaf-wax n-alkanes and of stem, leaf, stream, and atmospheric waters throughout the entire growing season. Here we found the δ(2)H values of leaf-wax n-alkanes recorded only a 2-wk period during leaf flush and did not vary for the 19 weeks thereafter when leaves remained active. We found δ(2)H values of leaf-wax n-alkanes of P. angustifolia record conditions earlier in the season rather than fully integrating the entire growing season. Using these data, we modeled precipitation δ(2)H values during the time of wax synthesis. We observed that the isotope ratios of this precipitation generally were (2)H-enriched compared with mean annual precipitation. This model provides a mechanistic basis of the often-observed (2)H-enrichment from the expected fractionation values in studies of broadleaf angiosperm leaf-wax δ(2)H. In addition, these findings may have implications for the spatial and temporal uses of n-alkane δ(2)H values in paleoapplications; when both plant community and growth form are known, this study allows the isolation of the precipitation dynamics of individual periods of the growing season.


Assuntos
Alcanos/análise , Clima , Folhas de Planta/química , Populus , Ceras/química , Atmosfera/análise , Deutério/análise , Água Doce/análise , Sistemas de Informação Geográfica , Utah
7.
Plant Cell Environ ; 38(6): 1035-47, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25266328

RESUMO

The extent to which both water source and atmospheric humidity affect δ(2)H values of terrestrial plant leaf waxes will affect the interpretations of δ(2)H variation of leaf waxes as a proxy for hydrological conditions. To elucidate the effects of these parameters, we conducted a long-term experiment in which we grew two tree species, Populus fremontii and Betula occidentalis, hydroponically under combinations of six isotopically distinct waters and two different atmospheric humidities. We observed that leaf n-alkane δ(2)H values of both species were linearly related to source water δ(2)H values, but with slope differences associated with differing humidities. When a modified version of the Craig-Gordon model incorporating plant factors was used to predict the δ(2)H values of leaf water, all modelled leaf water values fit the same linear relationship with n-alkane δ(2)H values. These observations suggested a relatively constant biosynthetic fractionation factor between leaf water and n-alkanes. However, our calculations indicated a small difference in the biosynthetic fractionation factor between the two species, consistent with small differences calculated for species in other studies. At present, it remains unclear if these apparent interspecies differences in biosynthetic fractionation reflect species-specific biochemistry or a common biosynthetic fractionation factor with insufficient model parameterization.


Assuntos
Alcanos/análise , Betula/crescimento & desenvolvimento , Hidroponia , Folhas de Planta/química , Populus/crescimento & desenvolvimento , Árvores/crescimento & desenvolvimento , Ceras/química , Betula/metabolismo , Deutério/metabolismo , Umidade , Hidrogênio/metabolismo , Folhas de Planta/metabolismo , Populus/metabolismo , Árvores/metabolismo , Água/metabolismo
8.
Oecologia ; 179(4): 981-97, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26310435

RESUMO

The use of hydrogen isotope ratios (δ(2)H) of sedimentary n-alkanes from leaf waxes has become an important tool for reconstructing paleoenvironmental and ancient hydrologic conditions. Studies of modern plant waxes can elucidate driving ecological mechanisms behind geologic deposits. Here, we used a transect across the North American Monsoon region of the western USA from Tucson, Arizona to Salt Lake City, Utah to study variations in leaf wax δ(2)H among co-occurring plants. Three co-occurring life forms were selected: perennial shrub (rabbit brush, Chrysothamnus nauseosus; sagebrush, Artemisia tridentata); tree (Gambel's oak tree, Quercus gambelii); and annual (sunflower, Helianthus annuus). Our results showed that the distributions and abundances of n-alkanes in perennial plants were similar across all sites and generally did not vary with environmental conditions (e.g., precipitation and temperature). In contrast, variations in n-alkane δ(2)H were significantly correlated with the fraction of the annual precipitation coming during the summer monsoon period. We use a modified Craig-Gordon model to speculate on the possible drivers of the δ(2)H values of leaf wax n-alkanes of plants across the region. The model results suggest that the most likely explanation for variation in wax δ(2)H values was a combination of seasonal source water usage and subsequent environmental conditions.


Assuntos
Alcanos/análise , Artemisia/crescimento & desenvolvimento , Helianthus/crescimento & desenvolvimento , Folhas de Planta/química , Quercus/crescimento & desenvolvimento , Ceras/química , Arizona , Artemisia/metabolismo , Deutério/análise , Ecologia , Helianthus/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Quercus/metabolismo , Estações do Ano , Temperatura , Utah , Água/metabolismo
9.
Proc Natl Acad Sci U S A ; 110(4): 1144-5, 2013 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-23307813
10.
PLoS One ; 15(5): e0233712, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32469972

RESUMO

Trace elements in hair originate from intake (e.g., diet, inhalation, skin absorption), are transported in the bloodstream, and then incorporated during hair formation. However, the trace element abundance and isotopic compositions may be altered by post-eruption environmental processes. Such alterations must be addressed to obtain a meaningful interpretation of hair analysis for biomonitoring. In this study, we used strontium (Sr) isotopic analysis together with sorption kinetics of ionic Sr to quantify the rate and extent of replacement of endogenous Sr in hair by exogenous Sr from ambient water. We found that with only 10 minutes of exposure at room temperature (22°C), more than 30% of original endogenous Sr in hair was replaced with exogenous Sr from the solution. After 16 days of exposure to the solution, more than 90% of endogenous Sr was replaced, with a warmer temperature (60°C) accelerating the exchange substantially. We also found that acid leaching of exposed hair did not remove or isolate the exogenous Sr; therefore, neither the original endogenous nor the exogenous 87Sr/86Sr signal could be separated. Nonetheless, these findings illustrated that the quantitative correlation between the fraction of exogenous Sr and the soaking time, if established, could be used to estimate the length of water contact time for hair in forensic studies. Even if such time since initial contact cannot be established, the combination of acid leaching and 87Sr/86Sr analysis of hair samples may still be valuable in provenance studies to identify recent changes in the exogenous Sr pool, including movements or changes in water source.


Assuntos
Medicina Legal , Cabelo/química , Temperatura Alta , Isótopos de Estrôncio/análise , Água/análise , Humanos
11.
Sci Rep ; 8(1): 3334, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29463835

RESUMO

The oxygen (18O/16O) isotope analysis of hair is commonly applied to reconstruct an individual's residence history. However, region-of-origin as determined from oxygen isotope values (δ18O) alone is often spatially indistinct. Adding additional geochemical recorders can refine region-of-origin estimates. In this capacity, strontium (87Sr/86Sr) isotope analysis has attracted increased interest. While 87Sr/86Sr reflects the influences of local geology, 87Sr/86Sr of hair includes both external environmental signals as well as the internal dietary indicators. To better understand the impact of these contributions to the spatial signal encoded within 87Sr/86Sr of hair, human hair was collected from three locations within Salt Lake City, Utah along with the donor's sex. The 87Sr/86Sr and δ18O of hair and local tap water were measured. There were no significant relationships between sex and either δ18O or 87Sr/86Sr of hair, nor between collection location and the δ18O of hair. However, we found significant associations between collection location and 87Sr/86Sr of hair. These findings suggest that interactions with local water may be an important source of Sr to human hair and that the 87Sr/86Sr of hair may have the capacity to record differences in 87Sr/86Sr of tap waters on small spatial scales.


Assuntos
Cabelo/química , Isótopos de Oxigênio/análise , Isótopos de Estrôncio/análise , Abastecimento de Água/estatística & dados numéricos , Água/análise , Cidades/estatística & dados numéricos , Feminino , Humanos , Masculino , Espectrometria de Massas
12.
Water Res ; 119: 212-224, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28463769

RESUMO

Water availability and sustainability in the Western United States is a major flashpoint among expanding communities, growing industries, and productive agricultural lands. This issue came to a head in 2015 in the State of California, when the State mandated a 25% reduction in urban water use following a multi-year drought that significantly depleted water resources. Water demands and challenges in supplying water are only expected to intensify as climate perturbations, such as the 2012-2015 California Drought, become more common. As a consequence, there is an increased need to understand linkages between urban centers, water transport and usage, and the impacts of climate change on water resources. To assess if stable hydrogen and oxygen isotope ratios could increase the understanding of these relationships within a megalopolis in the Western United States, we collected and analyzed 723 tap waters across the San Francisco Bay Area during seven collection campaigns spanning 21 months during 2013-2015. The San Francisco Bay Area was selected as it has well-characterized water management strategies and the 2012-2105 California Drought dramatically affected its water resources. Consistent with known water management strategies and previously collected isotope data, we found large spatiotemporal variations in the δ2H and δ18O values of tap waters within the Bay Area. This is indicative of complex water transport systems and varying municipality-scale management decisions. We observed δ2H and δ18O values of tap water consistent with waters originating from snowmelt from the Sierra Nevada Mountains, local precipitation, ground water, and partially evaporated reservoir sources. A cluster analysis of the isotope data collected in this study grouped waters from 43 static sampling sites that were associated with specific water utility providers within the San Francisco Bay Area and known management practices. Various management responses to the drought, such as source switching, bringing in new sources, and water conservation, were observed in the isotope data. Finally, we estimated evaporative loss from one utility's reservoir system during the 2015 water year using a modified Craig-Gordon model to estimate the consequences of the drought on this resource. We estimated that upwards of 6.6% of the water in this reservoir system was lost to evaporation.


Assuntos
Secas , Hidrogênio , Isótopos de Oxigênio , Água , Baías , Cidades , Mudança Climática , Monitoramento Ambiental , Nevada , São Francisco
13.
Forensic Sci Int ; 262: 233-41, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27045381

RESUMO

While much is known about how the growth environment influences many aspects of floral morphology and physiology, little is known about how the growth setting influences floral lipid composition. We explored variations in paraffin wax composition in Cannabis sp., a cash crop grown both indoors and outdoors across the United States today. Given an increased focus on regulation of this crop, there are additional incentives to certify the setting of Cannabis cultivation. To understand the impacts of the growth environment, we studied distributions, concentrations, and carbon isotope ratios of n-alkanes isolated from Cannabis sp. inflorescences to assess if variations within these lipid parameters were related to known growth settings of specimens seized by federal agents. We found that Cannabis plants cultivated under open-field settings had increased inflorescence paraffin wax abundances and greater production of lower molecular weight n-alkanes relative to plants grown in enclosed environments. Further, the carbon isotope ratios of n-C29 from Cannabis plants grown in enclosed environments had relatively lower carbon isotope (δ(13)C) values compared to plants from open-field environments. While this set of observations on seized plant specimens cannot address the particular driver behind these observations, we posit that (a) variations in irradiance and/or photoperiod may influence the distribution and concentration of inflorescence lipids, and (b) the δ(13)C value of source CO2 and lipid concentration regulates the δ(13)C values of inflorescence n-C29 and bulk Cannabis plant materials. Nonetheless, by using a cultivation model based on δ(13)C values of n-C29, the model correctly identified the growth environment 90% of time. We suggest that these lipid markers may be used to trace cultivation methods of Cannabis sp. now and become a more powerful marker in the future, once the mechanism(s) behind these patterns is uncovered.


Assuntos
Agricultura/métodos , Cannabis/química , Cannabis/crescimento & desenvolvimento , Alcanos/análise , Biomarcadores/análise , Isótopos de Carbono/análise , Ciências Forenses , Inflorescência/química , Lipídeos/análise
14.
Isotopes Environ Health Stud ; 52(4-5): 477-86, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27142528

RESUMO

Isotope hydrology has focused largely on landscapes away from densely inhabited regions. In coming decades, it will become increasingly more important to focus on water supplies and dynamics within urban systems. Stable isotope analyses provide important information to water managers within large cities, particularly in arid regions where evaporative histories of water sources, vulnerabilities, and reliabilities of the water supplies can be major issues. Here the spatial and vertical understanding of water supporting urban systems that comes from stable isotope analyses can serve as a useful management tool. We explore this research frontier using the coupled natural-human landscape of the Salt Lake Valley, USA, with its greater than one million inhabitants. We first provide data on the stable isotope ratios of the hydrologic system's primary components: precipitation, incoming surface waters, and terminus waters in this closed basin. We then explore the spatial and temporal patterns of drinking waters within the urban landscape and the new opportunities to better link isotope ratio data with short- and long-term management interests of water managers.


Assuntos
Deutério/análise , Água Potável/análise , Cidades , Água Potável/química , Hidrologia , Isótopos de Oxigênio/análise , Utah
15.
Sci Justice ; 55(1): 27-33, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25577004

RESUMO

We investigated a novel application of stable isotope abundance analysis of nitrogen (15N), carbon (13C), hydrogen (2H), and oxygen (18O) to characterize pen ink. We focused on both ballpoint and gel pen inks. We found that the isotope ratios of ink from pens purchased together in a package were similar and within-package stable isotope ratio variability was not significantly larger than the variability of isotope reference materials used during analysis. In contrast, the isotope ratios of ink from pens of the same brand purchased in three states of the continental USA were significantly different from each other and there was isotope ratio variation among pens of the same brand but different, unknown production periods. The stable isotope ratios of inked paper were statistically distinguishable using measured δ15N values. Paper inked with different gel pens was statistically distinguishable using measured δ2H values. The capacity of stable isotope ratios to differentiate among ballpoint inks as well as gel inks shows that stable isotope analysis may be a useful and quantifiable investigative technique for questioned document examination, although current sample size requirements limit its utility. Application of the technique in casework will require the development of micro-scale sampling and analysis methods.

16.
Anal Chim Acta ; 798: 64-73, 2013 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-24070485

RESUMO

The elements of human hair record specific information about an individual's health, diet, and surrounding environment. Strontium isotope ratios of human hair have attracted interest as they potentially record an individual's environment. Yet, separating the external environmental signals from the internal dietary indicators has remained a challenge. Here, we examined the effects of five different hair-cleaning methodologies to determine the extent that internal and external strontium signals can be isolated from human hair. In the first study of its kind, we employed an in-line strontium purification methodology and a multi-collector inductively coupled plasma mass spectrometer to obtain high-precision strontium isotope ratio of human hair and of leachates of the different washing treatments. We found that the different applications of an individual treatment removed a consistent amount of strontium from hair and that replicate analyses showed each treatment altered the strontium isotope ratios of hair consistently. A mass-balance approach was applied to demonstrate that strontium was quantitatively removed and was accounted for in either the treated hair or the leachate. We observed that strontium isotope ratio varied as a function of treatment aggressiveness so as to suggest that there was a fine-scale structuring of strontium within hair (transverse cross-sectional variations); these variations existed as differences in strontium concentrations and isotope ratios. As a result, the Sr isotope ratio of hair and hair leachates treated with the most aggressive cleaning methods reflected the isotope ratios of the interior and total exterior strontium signatures, respectively. The results of this study indicate that external environmental strontium signals can be distinguished from the internal signals and therefore permit the application of strontium isotope ratios of modern human hair for geospatial applications.


Assuntos
Cabelo/química , Espectrometria de Massas , Estrôncio/análise , Clorofórmio/química , Humanos , Ácido Clorídrico/química , Metanol/química , Ácido Nítrico/química , Isótopos de Estrôncio/análise , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA