RESUMO
Current knowledge about the fate and transport behaviors of per- and polyfluoroalkyl substances (PFASs) in urban stormwater biofilter facilities is very limited. C5-14,16 perfluoroalkyl carboxylic acids [perfluorinated carboxylic acids (PFCAs)], C4,8,10 perfluoroalkanesulfonic acids (PFSAs), methyl-perfluorooctane sulfonamide acetic acid (MeFOSAA, a PFSA precursor), and unknown C6-8 PFCA and perfluorooctanesulfonic acid precursors were frequently found in bioretention media and forebay sediments at Σ35PFAS concentrations of <0.03-19 and 0.064-16 µg/kg-DW, respectively. Unknown C6-8 PFCA precursor concentrations were up to ten times higher than the corresponding PFCAs, especially at forebays and biofilters' top layer. No significant trend could be attributed to PFAS and precursor concentrations versus depth of filter media, though PFAS concentrations were 2-3 times higher in the upper layers on average (significant difference between the upper (0-5 cm) and deepest (35-50 cm) layer). PFASs had a similar spatial concentration distribution in each filter media (no clear difference between short- and long-chain PFASs). Commercial land use and organic matter were important factors explaining the concentration variations among the biofilters and between the sampling depths, respectively. Given the comparable PFAS accumulations in deeper and superficial layers and possible increased mobility after precursor biotransformation, designing shallow-depth, nonamended sand biofilters or maintaining only the top layer may be insufficient for stormwater PFAS management.
Assuntos
Filtração , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Fluorocarbonos/análise , Monitoramento AmbientalRESUMO
Cities have turned to permeable pavements as one tool to mitigate the detrimental effects of urban runoff. Permeable pavements permit rainfall to infiltrate through a series of aggregate layers, where pollutants are filtered out before the water discharges via an underdrain or exfiltrates into native soils. This study reports on the water quality performance of a parking area retrofitted with permeable interlocking concrete pavement in Vermilion, OH, USA. The practice was constructed in 2015, received run-on from an asphalt traffic lane and was operational for 2 years before the onset of monitoring. During the 15-month monitoring period, the permeable pavement provided significant reductions of sediment and particulate nutrients, which were removed via filtration in the upper aggregate layers. Despite poorly draining underlying soils, runoff volumes were reduced by 26%, leading to significant load reductions for nearly all nutrient and heavy metals in the study. Seasonal variations in runoff and effluent composition were investigated, showing that restorative maintenance performed in spring and fall has the potential to further improve the treatment provided by the practice by removing entrained particulates from the upper aggregate layers and restoring the filtering capacity of the system. Correlation analyses revealed a first flush of particulate nitrogen species, as well as the potential occurrence of erosive flows within the aggregate subbase which resulted in elevated sediment concentrations during high intensity rain events. Results from this study demonstrate the effectiveness of permeable pavements several years after construction, even when design features to specifically improve treatment were not implemented and additional run-on is routed onto the pavement from adjacent impervious surfaces. Findings also highlight the importance of timely maintenance of these practices, which could further improve their performance by removing seasonally deposited pollutants throughout the year.