Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Emerg Infect Dis ; 23(10): 1684-1685, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28930012

RESUMO

The largest outbreak of dengue in Buenos Aires, Argentina, occurred during 2016. Phylogenetic, phylodynamic, and phylogeographic analyses of 82 samples from dengue patients revealed co-circulation of 2 genotype V dengue virus lineages, suggesting that this virus has become endemic to the Buenos Aires metropolitan area.


Assuntos
Vírus da Dengue/genética , Dengue/epidemiologia , Surtos de Doenças , Filogenia , Proteínas do Envelope Viral/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Substituição de Aminoácidos , Argentina/epidemiologia , Criança , Pré-Escolar , Dengue/transmissão , Dengue/virologia , Vírus da Dengue/classificação , Vírus da Dengue/isolamento & purificação , Feminino , Genótipo , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Filogeografia
2.
Viruses ; 15(2)2023 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-36851525

RESUMO

The COVID-19 pandemic has lately been driven by Omicron. This work aimed to study the dynamics of SARS-CoV-2 Omicron lineages during the third and fourth waves of COVID-19 in Argentina. Molecular surveillance was performed on 3431 samples from Argentina, between EW44/2021 and EW31/2022. Sequencing, phylogenetic and phylodynamic analyses were performed. A differential dynamic between the Omicron waves was found. The third wave was associated with lineage BA.1, characterized by a high number of cases, very fast displacement of Delta, doubling times of 3.3 days and a low level of lineage diversity and clustering. In contrast, the fourth wave was longer but associated with a lower number of cases, initially caused by BA.2, and later by BA.4/BA.5, with doubling times of about 10 days. Several BA.2 and BA.4/BA.5 sublineages and introductions were detected, although very few clusters with a constrained geographical distribution were observed, suggesting limited transmission chains. The differential dynamic could be due to waning immunity and an increase in population gatherings in the BA.1 wave, and a boosted population (for vaccination or recent prior immunity for BA.1 infection) in the wave caused by BA2/BA.4/BA.5, which may have limited the establishment of the new lineages.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , Argentina/epidemiologia , Pandemias , Filogenia
3.
PLoS One ; 13(6): e0199714, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29940028

RESUMO

Over the last decade, the number of viral genome sequences deposited in available databases has grown exponentially. However, sequencing methodology vary widely and many published works have relied on viral enrichment by viral culture or nucleic acid amplification with specific primers rather than through unbiased techniques such as metagenomics. The genome of RNA viruses is highly variable and these enrichment methodologies may be difficult to achieve or may bias the results. In order to obtain genomic sequences of human respiratory syncytial virus (HRSV) from positive nasopharyngeal aspirates diverse methodologies were evaluated and compared. A total of 29 nearly complete and complete viral genomes were obtained. The best performance was achieved with a DNase I treatment to the RNA directly extracted from the nasopharyngeal aspirate (NPA), sequence-independent single-primer amplification (SISPA) and library preparation performed with Nextera XT DNA Library Prep Kit with manual normalization. An average of 633,789 and 1,674,845 filtered reads per library were obtained with MiSeq and NextSeq 500 platforms, respectively. The higher output of NextSeq 500 was accompanied by the increasing of duplicated reads percentage generated during SISPA (from an average of 1.5% duplicated viral reads in MiSeq to an average of 74% in NextSeq 500). HRSV genome recovery was not affected by the presence or absence of duplicated reads but the computational demand during the analysis was increased. Considering that only samples with viral load ≥ E+06 copies/ml NPA were tested, no correlation between sample viral loads and number of total filtered reads was observed, nor with the mapped viral reads. The HRSV genomes showed a mean coverage of 98.46% with the best methodology. In addition, genomes of human metapneumovirus (HMPV), human rhinovirus (HRV) and human parainfluenza virus types 1-3 (HPIV1-3) were also obtained with the selected optimal methodology.


Assuntos
Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Laringe/virologia , Cavidade Nasal/virologia , Vírus Sinciciais Respiratórios/genética , Feminino , Humanos , Masculino , Vírus Sinciciais Respiratórios/isolamento & purificação
4.
PLoS One ; 9(10): e111017, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25343372

RESUMO

Dengue virus (DENV) is a public health problem representing the most important arthropod-borne viral disease in humans. In Argentina, Northern provinces have reported autochthonous cases since 1997, though these outbreaks have originated in bordering countries, where co-circulation of more than one serotype has been reported. In the last decade, imported dengue cases have been reported in Buenos Aires, the urban area of Argentina with the highest population density. In 2009, a dengue outbreak affected Buenos Aires and, for the first time, local transmission was detected. All cases of this outbreak were caused by DENV-1. In this report, we present the full-length sequences of 27 DENV-1 isolates, corresponding to imported cases of 1999-2000, as well as local and imported cases of the 2009 and 2010 outbreaks. We analyzed their phylogenetic and phylodynamic relationships and their global and local spread. Additionally, we characterized their genomic and phenotypic features. All cases belonged to DENV-1 genotype V. The most recent ancestor for this genotype was dated ∼1934, whereas that for the 2009 outbreak was dated ∼2007. The mean rates of nucleotide substitution were 4.98E-4 and 8.53E-4 subs./site/yr, respectively. We inferred an introduction from Paraguay in 1999-2000 and mainly from Venezuela during 2009-2010. Overall, the number of synonymous substitutions per synonymous site significantly exceeded the number of non-synonymous substitutions per site and 12 positively selected sites were detected. These analyses could contribute to a better understanding regarding spread and evolution of this pathogen in the Southern Cone of South America.


Assuntos
Vírus da Dengue/fisiologia , Dengue/transmissão , Argentina/epidemiologia , Teorema de Bayes , Dengue/virologia , Vírus da Dengue/genética , Vírus da Dengue/isolamento & purificação , Genótipo , Humanos , Dados de Sequência Molecular , Filogenia , Filogeografia , RNA Viral/genética , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA