Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
J Fish Biol ; 98(4): 956-970, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32112658

RESUMO

When considering relationships between genotype and phenotype we frequently ignore the fact that the genome of a typical animal, notably including that of a fish and a human, harbours a huge amount of foreign DNA. Such DNA, in the form of transposable elements, can affect genome function in a major way, and transgene biology needs to be included in our understanding of the genome. Here we examine an unexpected phenotypic effect of the chromosomally integrated transgene fli1a-F-hsp70l:Gal4VP16 that serves as a model for transgene function generally. We examine larval fras1 mutant zebrafish (Danio rerio). Gal4VP16 is a potent transcriptional activator that is already well known for toxicity and mediating unusual transcriptional effects. In the presence of the transgene, phenotypes in the neural crest-derived craniofacial skeleton, notably fusions and shape changes associated with loss of function fras1 mutations, are made more severe, as we quantify by scoring phenotypic penetrance, the fraction of mutants expressing the trait. A very interesting feature is that the enhancements are highly specific for fras1 mutant phenotypes, occurring in the apparent absence of more widespread changes. Except for the features due to the fras1 mutation, the transgene-bearing larvae appear generally healthy and to be developing normally. The transgene behaves as a genetic partial dominant: a single copy is sufficient for the enhancements, yet, for some traits, two copies may exert a stronger effect. We made new strains bearing independent insertions of the fli1a-F-hsp70l:Gal4VP16 transgene in new locations in the genome, and observed increased severities of the same phenotypes as observed for the original insertion. This finding suggests that sequences within the transgene, for example Gal4VP16, are responsible for the enhancements, rather than the effect on neighbouring host sequences (such as an insertional mutation). The specificity and biological action underlying the traits are subjects of considerable interest for further investigation, as we discuss. Our findings show that work with transgenes needs to be undertaken with caution and attention to detail.


Assuntos
Variação Biológica da População , Osso e Ossos/anatomia & histologia , Peixe-Zebra/anatomia & histologia , Peixe-Zebra/genética , Animais , Desenvolvimento Ósseo/genética , Humanos , Mutação , Fenótipo , Transgenes
2.
J Mol Evol ; 87(7-8): 199-208, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31332479

RESUMO

Cave animals possess remarkable phenotypes associated with existence in their dark environments. The Chinese cavefish Sinocyclocheilus tileihornes shows substantial eye degeneration, a trait shared by most cave species. The extent to which independent evolution of troglomorphic traits uses convergent molecular genetic mechanisms is as yet unknown. We performed transcriptome-wide gene expression profiling in S. tileihornes eyes and compared results with those from the closely related surface species S. angustiporus and an independently derived congeneric cavefish, S. anophthalmus. In total, 52.85 million 100 bp long paired-end clean reads were generated for S. tileihornes, and we identified differentially expressed genes between the three possible pairs of species. Functional analysis of genes differentially expressed between S. tileihornes and S. angustiporus revealed that phototransduction (KEGG id: dre04744) was the most significantly enriched pathway, indicating the obvious differences in response to captured photons between the cavefish S. tileihornes and the surface species S. angustiporus. Analysis of key genes regulating eye development showed complete absence of otx5b (orthodenticle homolog 5) expression in S. tileihornes eyes, probably related to degradation of rods, but normal expression of crx (cone-rod homeobox). The enriched pathways and Otx5 are involved in phototransduction, photoreceptor formation, and regulation of photoreceptor-related gene expression. Unlike the S. tileihornes reported here, S. anophthalmus has reduced crx and otx5 expression. These results show that different species of cavefish within the same genus that independently evolved troglodyte characteristics can have different genetic mechanisms of eye degeneration.


Assuntos
Adaptação Biológica/genética , Cyprinidae/genética , Fatores de Transcrição Otx/genética , Animais , Evolução Biológica , Cavernas , Cyprinidae/metabolismo , Evolução Molecular , Olho/metabolismo , Regulação da Expressão Gênica , Fenômenos Fisiológicos Oculares , Fatores de Transcrição Otx/biossíntese , Fatores de Transcrição Otx/metabolismo , Fenótipo , Células Fotorreceptoras de Vertebrados/metabolismo , Transcriptoma
3.
Development ; 141(3): 639-49, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24449840

RESUMO

Hox genes are classically ascribed to function in patterning the anterior-posterior axis of bilaterian animals; however, their role in directing molecular mechanisms underlying morphogenesis at the cellular level remains largely unstudied. We unveil a non-classical role for the zebrafish hoxb1b gene, which shares ancestral functions with mammalian Hoxa1, in controlling progenitor cell shape and oriented cell division during zebrafish anterior hindbrain neural tube morphogenesis. This is likely distinct from its role in cell fate acquisition and segment boundary formation. We show that, without affecting major components of apico-basal or planar cell polarity, Hoxb1b regulates mitotic spindle rotation during the oriented neural keel symmetric mitoses that are required for normal neural tube lumen formation in the zebrafish. This function correlates with a non-cell-autonomous requirement for Hoxb1b in regulating microtubule plus-end dynamics in progenitor cells in interphase. We propose that Hox genes can influence global tissue morphogenesis by control of microtubule dynamics in individual cells in vivo.


Assuntos
Divisão Celular , Forma Celular , Proteínas de Homeodomínio/metabolismo , Microtúbulos/metabolismo , Morfogênese , Tubo Neural/citologia , Peixe-Zebra/embriologia , Animais , Região Branquial/embriologia , Região Branquial/metabolismo , Polaridade Celular , Epitélio/embriologia , Epitélio/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Mitose , Mutação/genética , Tubo Neural/metabolismo , Rombencéfalo/citologia , Rombencéfalo/embriologia , Peixe-Zebra/metabolismo
4.
Dev Dyn ; 245(11): 1066-1080, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27507212

RESUMO

BACKGROUND: Environmental temperature influences rates of embryonic development, but a detailed staging series for vertebrate embryos developing in the subzero cold of Antarctic waters is not yet available from fertilization to hatching. Given projected warming of the Southern Ocean, it is imperative to establish a baseline to evaluate potential effects of changing climate on fish developmental dynamics. RESULTS: We studied the Bullhead notothen (Notothenia coriiceps), a notothenioid fish inhabiting waters between -1.9 and +2 °C. In vitro fertilization produced embryos that progressed through cleavage, epiboly, gastrulation, segmentation, organogenesis, and hatching. We compared morphogenesis spatially and temporally to Zebrafish and medaka. Experimental animals hatched after about 6 months to early larval stages. To help understand skeletogenesis, we analyzed late embryos for expression of sox9 and runx2, which regulate chondrogenesis, osteogenesis, and eye development. Results revealed that, despite their prolonged developmental time course, N. coriiceps embryos developed similarly to those of other teleosts with large yolk cells. CONCLUSIONS: Our studies set the stage for future molecular analyses of development in these extremophile fish. Results provide a foundation for understanding the impact of ocean warming on embryonic development and larval recruitment of notothenioid fish, which are key factors in the marine trophic system. Developmental Dynamics 245:1066-1080, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Desenvolvimento Embrionário/fisiologia , Esqueleto/embriologia , Esqueleto/metabolismo , Animais , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário/genética , Feminino , Masculino , Oryzias/embriologia , Oryzias/metabolismo , Perciformes/embriologia , Perciformes/metabolismo , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo
5.
Mol Biol Evol ; 30(7): 1527-43, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23612715

RESUMO

In adaptating to perpetual darkness, cave species gradually lose eyes and body pigmentation and evolve alternatives for exploring their environments. Although troglodyte features evolved independently many times in cavefish, we do not yet know whether independent evolution of these characters involves common genetic mechanisms. Surface-dwelling and many cave-dwelling species make the freshwater teleost genus Sinocyclocheilus an excellent model for studying the evolution of adaptations to life in constant darkness. We compared the mature retinal histology of surface and cave species in Sinocyclocheilus and found that adult cavefish showed a reduction in the number and length of photoreceptor cells. To identify genes and genetic pathways that evolved in constant darkness, we used RNA-seq to compare eyes of surface and cave species. De novo transcriptome assemblies were developed for both species, and contigs were annotated with gene ontology. Results from cave-dwelling Sinocyclocheilus revealed reduced transcription of phototransduction and other genes important for retinal function. In contrast to the blind Mexican tetra cavefish Astyanax mexicanus, our results on morphologies and gene expression suggest that evolved retinal reduction in cave-dwelling Sinocyclocheilus occurs in a lens-independent fashion by the reduced proliferation and downregulation of transcriptional factors shown to have direct roles in retinal development and maintenance, including cone-rod homeobox (crx) and Wnt pathway members. These results show that the independent evolution of retinal degeneration in cavefish can occur by different developmental genetic mechanisms.


Assuntos
Adaptação Biológica , Evolução Biológica , Olho/patologia , Degeneração Retiniana/genética , Animais , Sequência de Bases , Cavernas , Characidae/genética , Cipriniformes/genética , Escuridão , Olho/metabolismo , Pigmentação/genética , Degeneração Retiniana/patologia , Transcriptoma/genética , Via de Sinalização Wnt
6.
Development ; 138(20): 4405-10, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21937597

RESUMO

Left-right (L/R) patterning is crucial for the proper development of all vertebrates and requires asymmetric expression of nodal in the lateral plate mesoderm (LPM). The mechanisms governing asymmetric initiation of nodal have been studied extensively, but because Nodal is a potent activator of its own transcription, it is also crucial to understand the regulation required to maintain this asymmetry once it is established. The 'midline barrier', consisting of lefty1 expression, is a conserved mechanism for restricting Nodal activity to the left. However, the anterior and posterior extremes of the LPM are competent to respond to Nodal signals yet are not adjacent to this barrier, suggesting that lefty1 is not the only mechanism preventing ectopic Nodal activation. Here, we demonstrate the existence of two additional midline barriers. The first is a 'posterior barrier' mediated by Bmp signaling that prevents nodal propagation through the posterior LPM. In contrast to previous reports, we find that Bmp represses Nodal signaling independently of lefty1 expression and through the activity of a ligand other than Bmp4. The 'anterior barrier' is mediated by lefty2 expression in the left cardiac field and prevents Nodal activation from traveling across the anterior limit of the notochord and propagating down the right LPM. Both barriers appear to be conserved across model systems and are thus likely to be present in all vertebrates.


Assuntos
Fatores de Determinação Direita-Esquerda/metabolismo , Proteína Nodal/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Receptores de Ativinas Tipo I/genética , Receptores de Ativinas Tipo I/metabolismo , Animais , Sequência de Bases , Padronização Corporal/genética , Padronização Corporal/fisiologia , Proteína Morfogenética Óssea 4/genética , Proteína Morfogenética Óssea 4/metabolismo , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Primers do DNA/genética , Regulação da Expressão Gênica no Desenvolvimento , Coração/embriologia , Fatores de Determinação Direita-Esquerda/genética , Ligantes , Mesoderma/embriologia , Mesoderma/metabolismo , Modelos Biológicos , Mutação , Proteína Nodal/genética , Notocorda/embriologia , Notocorda/metabolismo , Transdução de Sinais , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
7.
PLoS Genet ; 7(3): e1001357, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21483806

RESUMO

Mild mutations in BRCA2 (FANCD1) cause Fanconi anemia (FA) when homozygous, while severe mutations cause common cancers including breast, ovarian, and prostate cancers when heterozygous. Here we report a zebrafish brca2 insertional mutant that shares phenotypes with human patients and identifies a novel brca2 function in oogenesis. Experiments showed that mutant embryos and mutant cells in culture experienced genome instability, as do cells in FA patients. In wild-type zebrafish, meiotic cells expressed brca2; and, unexpectedly, transcripts in oocytes localized asymmetrically to the animal pole. In juvenile brca2 mutants, oocytes failed to progress through meiosis, leading to female-to-male sex reversal. Adult mutants became sterile males due to the meiotic arrest of spermatocytes, which then died by apoptosis, followed by neoplastic proliferation of gonad somatic cells that was similar to neoplasia observed in ageing dead end (dnd)-knockdown males, which lack germ cells. The construction of animals doubly mutant for brca2 and the apoptotic gene tp53 (p53) rescued brca2-dependent sex reversal. Double mutants developed oocytes and became sterile females that produced only aberrant embryos and showed elevated risk for invasive ovarian tumors. Oocytes in double-mutant females showed normal localization of brca2 and pou5f1 transcripts to the animal pole and vasa transcripts to the vegetal pole, but had a polarized rather than symmetrical nucleus with the distribution of nucleoli and chromosomes to opposite nuclear poles; this result revealed a novel role for Brca2 in establishing or maintaining oocyte nuclear architecture. Mutating tp53 did not rescue the infertility phenotype in brca2 mutant males, suggesting that brca2 plays an essential role in zebrafish spermatogenesis. Overall, this work verified zebrafish as a model for the role of Brca2 in human disease and uncovered a novel function of Brca2 in vertebrate oocyte nuclear architecture.


Assuntos
Proteína BRCA2/fisiologia , Instabilidade Genômica , Neoplasias de Tecido Gonadal/genética , Oócitos/fisiologia , Oogênese , Espermatogênese , Proteínas de Peixe-Zebra/fisiologia , Peixe-Zebra/fisiologia , Sequência de Aminoácidos , Animais , Apoptose/genética , Proteína BRCA2/genética , Transformação Celular Neoplásica/genética , Modelos Animais de Doenças , Anemia de Fanconi/genética , Feminino , Genes p53/genética , Genes p53/fisiologia , Humanos , Masculino , Dados de Sequência Molecular , Mutagênese Insercional/genética , Oócitos/citologia , Fenótipo , Espermatócitos/citologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
8.
Environ Pollut ; 340(Pt 2): 122765, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37913975

RESUMO

Persistent organic pollutants (POPs) are lipophilic compounds that bioaccumulate in animals and biomagnify within food webs. Many POPs are endocrine disrupting compounds that impact vertebrate development. POPs accumulate in the Arctic via global distillation and thereby impact high trophic level vertebrates as well as people who live a subsistence lifestyle. The Arctic also contains thousands of point sources of pollution, such as formerly used defense (FUD) sites. Sivuqaq (St. Lawrence Island), Alaska was used by the U.S. military during the Cold War and FUD sites on the island remain point sources of POP contamination. We examined the effects of POP exposure on ninespine stickleback (Pungitius pungitius) collected from Troutman Lake in the village of Gambell as a model for human exposure and disease. During the Cold War, Troutman Lake was used as a dump site by the U.S. military. We found that PCB concentrations in stickleback exceeded the U.S. Environmental Protection Agency's guideline for unlimited consumption despite these fish being low trophic level organisms. We examined effects at three levels of biological organization: gene expression, endocrinology, and histomorphology. We found that ninespine stickleback from Troutman Lake exhibited suppressed gonadal development compared to threespine stickleback (Gasterosteus aculeatus) studied elsewhere. Troutman Lake stickleback also displayed two distinct hepatic phenotypes, one with lipid accumulation and one with glycogen-type vacuolation. We compared the transcriptomic profiles of these liver phenotypes using RNA sequencing and found significant upregulation of genes involved in ribosomal and metabolic pathways in the lipid accumulation group. Additionally, stickleback displaying liver lipid accumulation had significantly fewer thyroid follicles than the vacuolated phenotype. Our study and previous work highlight health concerns for people and wildlife due to pollution hotspots in the Arctic, and the need for health-protective remediation.


Assuntos
Poluentes Ambientais , Smegmamorpha , Animais , Humanos , Alaska , Poluentes Orgânicos Persistentes/metabolismo , Lagos , Peixes/genética , Smegmamorpha/metabolismo , Poluentes Ambientais/metabolismo , Expressão Gênica , Lipídeos
9.
Environ Pollut ; 356: 124283, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38823546

RESUMO

Alaska contains over 600 formerly used defense (FUD) sites, many of which serve as point sources of pollution. These sites are often co-located with rural communities that depend upon traditional subsistence foods, especially lipid-rich animals that bioaccumulate and biomagnify persistent organic pollutants (POPs). Many POPs are carcinogenic and endocrine-disrupting compounds that are associated with adverse health outcomes. Therefore, elevated exposure to POPs from point sources of pollution may contribute to disproportionate incidence of disease in arctic communities. We investigated PCB concentrations and the health implications of POP exposure in sentinel fishes collected near the Northeast Cape FUD site on Sivuqaq (St. Lawrence Island), Alaska. Sivuqaq residents are almost exclusively Yupik and rely on subsistence foods. At the request of the Sivuqaq community, we examined differential gene expression and developmental pathologies associated with exposure to POPs originating at the Northeast Cape FUD site. We found significantly higher levels of PCBs in Alaska blackfish (Dallia pectoralis) collected from contaminated sites downstream of the FUD site compared to fish collected from upstream reference sites. We compared transcriptomic profiles and histopathologies of these same blackfish. Blackfish from contaminated sites overexpressed genes involved in ribosomal and FoxO signaling pathways compared to blackfish from reference sites. Contaminated blackfish also had significantly fewer thyroid follicles and smaller pigmented macrophage aggregates. Conversely, we found that ninespine stickleback (Pungitius pungitius) from contaminated sites exhibited thyroid follicle hyperplasia. Despite our previous research reporting transcriptomic and endocrine differences in stickleback from contaminated vs. reference sites, we did not find significant differences in kidney or gonadal histomorphologies. Our results demonstrate that contaminants from the Northeast Cape FUD site are associated with altered gene expression and thyroid development in native fishes. These results are consistent with our prior work demonstrating disruption of the thyroid hormone axis in Sivuqaq residents.


Assuntos
Monitoramento Ambiental , Peixes , Poluentes Orgânicos Persistentes , Transcriptoma , Poluentes Químicos da Água , Animais , Alaska , Bifenilos Policlorados , Regiões Árticas , Espécies Sentinelas
10.
Genetics ; 217(2)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33724412

RESUMO

People with NR5A1 mutations experience testicular dysgenesis, ovotestes, or adrenal insufficiency, but we do not completely understand the origin of this phenotypic diversity. NR5A1 is expressed in gonadal soma precursor cells before expression of the sex-determining gene SRY. Many fish have two co-orthologs of NR5A1 that likely partitioned ancestral gene subfunctions between them. To explore ancestral roles of NR5A1, we knocked out nr5a1a and nr5a1b in zebrafish. Single-cell RNA-seq identified nr5a1a-expressing cells that co-expressed genes for steroid biosynthesis and the chemokine receptor Cxcl12a in 1-day postfertilization (dpf) embryos, as does the mammalian adrenal-gonadal (interrenal-gonadal) primordium. In 2dpf embryos, nr5a1a was expressed stronger in the interrenal-gonadal primordium than in the early hypothalamus but nr5a1b showed the reverse. Adult Leydig cells expressed both ohnologs and granulosa cells expressed nr5a1a stronger than nr5a1b. Mutants for nr5a1a lacked the interrenal, formed incompletely differentiated testes, had no Leydig cells, and grew far larger than normal fish. Mutants for nr5a1b formed a disorganized interrenal and their gonads completely disappeared. All homozygous mutant genotypes lacked secondary sex characteristics, including male breeding tubercles and female sex papillae, and had exceedingly low levels of estradiol, 11-ketotestosterone, and cortisol. RNA-seq showed that at 21dpf, some animals were developing as females and others were not, independent of nr5a1 genotype. By 35dpf, all mutant genotypes greatly under-expressed ovary-biased genes. Because adult nr5a1a mutants form gonads but lack an interrenal and conversely, adult nr5a1b mutants lack a gonad but have an interrenal, the adrenal, and gonadal functions of the ancestral nr5a1 gene partitioned between ohnologs after the teleost genome duplication, likely owing to reciprocal loss of ancestral tissue-specific regulatory elements. Identifying such elements could provide hints to otherwise unexplained cases of Differences in Sex Development.


Assuntos
Glândulas Suprarrenais/metabolismo , Proteínas de Ligação a DNA/genética , Disgenesia Gonadal/genética , Gônadas/metabolismo , Fatores de Transcrição/genética , Proteínas de Peixe-Zebra/genética , Glândulas Suprarrenais/embriologia , Animais , Proteínas de Ligação a DNA/metabolismo , Feminino , Gônadas/embriologia , Masculino , Fenótipo , Processos de Determinação Sexual , Fatores de Transcrição/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
11.
BMC Evol Biol ; 10: 4, 2010 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-20053275

RESUMO

BACKGROUND: Pedomorphism is the retention of ancestrally juvenile traits by adults in a descendant taxon. Despite its importance for evolutionary change, there are few examples of a molecular basis for this phenomenon. Notothenioids represent one of the best described species flocks among marine fishes, but their diversity is currently threatened by the rapidly changing Antarctic climate. Notothenioid evolutionary history is characterized by parallel radiations from a benthic ancestor to pelagic predators, which was accompanied by the appearance of several pedomorphic traits, including the reduction of skeletal mineralization that resulted in increased buoyancy. RESULTS: We compared craniofacial skeletal development in two pelagic notothenioids, Chaenocephalus aceratus and Pleuragramma antarcticum, to that in a benthic species, Notothenia coriiceps, and two outgroups, the threespine stickleback and the zebrafish. Relative to these other species, pelagic notothenioids exhibited a delay in pharyngeal bone development, which was associated with discrete heterochronic shifts in skeletal gene expression that were consistent with persistence of the chondrogenic program and a delay in the osteogenic program during larval development. Morphological analysis also revealed a bias toward the development of anterior and ventral elements of the notothenioid pharyngeal skeleton relative to dorsal and posterior elements. CONCLUSIONS: Our data support the hypothesis that early shifts in the relative timing of craniofacial skeletal gene expression may have had a significant impact on the adaptive radiation of Antarctic notothenioids into pelagic habitats.


Assuntos
Osso e Ossos/anatomia & histologia , Evolução Molecular , Perciformes/crescimento & desenvolvimento , Animais , Calcificação Fisiológica , Regulação da Expressão Gênica no Desenvolvimento , Larva/anatomia & histologia , Larva/genética , Larva/crescimento & desenvolvimento , Perciformes/anatomia & histologia , Perciformes/genética , Filogenia , Análise de Sequência de DNA
12.
Mutat Res ; 668(1-2): 117-32, 2009 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-19101574

RESUMO

Fanconi anemia (FA) is a genetic disease resulting in bone marrow failure, high cancer risks, and infertility, and developmental anomalies including microphthalmia, microcephaly, hypoplastic radius and thumb. Here we present cDNA sequences, genetic mapping, and genomic analyses for the four previously undescribed zebrafish FA genes (fanci, fancj, fancm, and fancn), and show that they reverted to single copy after the teleost genome duplication. We tested the hypothesis that FA genes are expressed during embryonic development in tissues that are disrupted in human patients by investigating fanc gene expression patterns. We found fanc gene maternal message, which can provide Fanc proteins to repair DNA damage encountered in rapid cleavage divisions. Zygotic expression was broad but especially strong in eyes, central nervous system and hematopoietic tissues. In the pectoral fin bud at hatching, fanc genes were expressed specifically in the apical ectodermal ridge, a signaling center for fin/limb development that may be relevant to the radius/thumb anomaly of FA patients. Hatching embryos expressed fanc genes strongly in the oral epithelium, a site of squamous cell carcinomas in FA patients. Larval and adult zebrafish expressed fanc genes in proliferative regions of the brain, which may be related to microcephaly in FA. Mature ovaries and testes expressed fanc genes in specific stages of oocyte and spermatocyte development, which may be related to DNA repair during homologous recombination in meiosis and to infertility in human patients. The intestine strongly expressed some fanc genes specifically in proliferative zones. Our results show that zebrafish has a complete complement of fanc genes in single copy and that these genes are expressed in zebrafish embryos and adults in proliferative tissues that are often affected in FA patients. These results support the notion that zebrafish offers an attractive experimental system to help unravel mechanisms relevant not only to FA, but also to breast cancer, given the involvement of fancj (brip1), fancn (palb2) and fancd1 (brca2) in both conditions.


Assuntos
Anemia de Fanconi/genética , Modelos Animais , Peixe-Zebra/genética , Animais , Reparo do DNA , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Expressão Gênica , Humanos , Peixe-Zebra/embriologia , Peixe-Zebra/crescimento & desenvolvimento
13.
Sex Dev ; 13(3): 143-150, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31247625

RESUMO

The Indian garden lizard, Calotes versicolor, lacks cytologically recognizable sex chromosomes, and its mechanism of sex determination is unclear. We evaluated genotype-to-sex-phenotype association using RAD-seq in wild-caught males and females, 30 of each sex. Of 210,736 unique, 96-nt long RAD-tags, 48% contained polymorphisms, 23% of which were present in at least 40 of 60 individuals. Twenty one RAD-tags neared, but none achieved, the inclusion criteria for sex enrichment, as expected if C. versicolor lacks highly differentiated sex chromosomes. Three RAD-tags with alleles most strongly associated with sex tended to be heterozygous in females and to lack male-specific alleles, suggesting a ZW female/ZZ male system. Putative female alleles, however, were present in some males and lacking from some females, suggesting either recombination between these markers and the sex locus or sex reversal due to environmental or genetic factors. Paired-end, 250-nt reads from 1 male provided a fragmented draft genome assembly. Four sex-associated RAD-tags were identical to portions of 4 unique C. versicolor genomic contigs rather than linked to a single putative sex-linked region. The lack of strongly sex-linked loci coupled with weak evidence for temperature-associated sex determination intensifies the need for further investigation of the puzzling sex determination mechanism in C. versicolor.


Assuntos
Loci Gênicos , Lagartos/genética , Processos de Determinação Sexual/genética , Animais , Feminino , Biblioteca Gênica , Genoma , Masculino , Polimorfismo de Nucleotídeo Único/genética
14.
Genetics ; 213(2): 529-553, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31399485

RESUMO

Fetal mammalian testes secrete Anti-Müllerian hormone (Amh), which inhibits female reproductive tract (Müllerian duct) development. Amh also derives from mature mammalian ovarian follicles, which marks oocyte reserve and characterizes polycystic ovarian syndrome. Zebrafish (Danio rerio) lacks Müllerian ducts and the Amh receptor gene amhr2 but, curiously, retains amh To discover the roles of Amh in the absence of Müllerian ducts and the ancestral receptor gene, we made amh null alleles in zebrafish. Results showed that normal amh prevents female-biased sex ratios. Adult male amh mutants had enormous testes, half of which contained immature oocytes, demonstrating that Amh regulates male germ cell accumulation and inhibits oocyte development or survival. Mutant males formed sperm ducts and some produced a few offspring. Young female mutants laid a few fertile eggs, so they also had functional sex ducts. Older amh mutants accumulated nonvitellogenic follicles in exceedingly large but sterile ovaries, showing that Amh helps control ovarian follicle maturation and proliferation. RNA-sequencing data partitioned juveniles at 21 days postfertilization (dpf) into two groups that each contained mutant and wild-type fish. Group21-1 upregulated ovary genes compared to Group21-2, which were likely developing as males. By 35 dpf, transcriptomes distinguished males from females and, within each sex, mutants from wild types. In adult mutants, ovaries greatly underexpressed granulosa and theca genes, and testes underexpressed Leydig cell genes. These results show that ancestral Amh functions included development of the gonadal soma in ovaries and testes and regulation of gamete proliferation and maturation. A major gap in our understanding is the identity of the gene encoding a zebrafish Amh receptor; we show here that the loss of amhr2 is associated with the breakpoint of a chromosome rearrangement shared among cyprinid fishes.


Assuntos
Hormônio Antimülleriano/genética , Genitália Feminina/crescimento & desenvolvimento , Processos de Determinação Sexual , Peixe-Zebra/genética , Animais , Feminino , Gônadas/crescimento & desenvolvimento , Ductos Paramesonéfricos/crescimento & desenvolvimento , Folículo Ovariano/crescimento & desenvolvimento , Ovário/crescimento & desenvolvimento , RNA-Seq , Receptores de Peptídeos/genética , Receptores de Fatores de Crescimento Transformadores beta/genética , Peixe-Zebra/crescimento & desenvolvimento
15.
Nat Ecol Evol ; 3(3): 469-478, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30804520

RESUMO

Icefishes (suborder Notothenioidei; family Channichthyidae) are the only vertebrates that lack functional haemoglobin genes and red blood cells. Here, we report a high-quality genome assembly and linkage map for the Antarctic blackfin icefish Chaenocephalus aceratus, highlighting evolved genomic features for its unique physiology. Phylogenomic analysis revealed that Antarctic fish of the teleost suborder Notothenioidei, including icefishes, diverged from the stickleback lineage about 77 million years ago and subsequently evolved cold-adapted phenotypes as the Southern Ocean cooled to sub-zero temperatures. Our results show that genes involved in protection from ice damage, including genes encoding antifreeze glycoprotein and zona pellucida proteins, are highly expanded in the icefish genome. Furthermore, genes that encode enzymes that help to control cellular redox state, including members of the sod3 and nqo1 gene families, are expanded, probably as evolutionary adaptations to the relatively high concentration of oxygen dissolved in cold Antarctic waters. In contrast, some crucial regulators of circadian homeostasis (cry and per genes) are absent from the icefish genome, suggesting compromised control of biological rhythms in the polar light environment. The availability of the icefish genome sequence will accelerate our understanding of adaptation to extreme Antarctic environments.


Assuntos
Adaptação Biológica , Ambientes Extremos , Genoma , Perciformes/genética , Animais , Regiões Antárticas , Feminino , Sequenciamento Completo do Genoma
16.
Curr Zool ; 64(6): 765-773, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30538736

RESUMO

The genus Sinocyclocheilus (golden-line barbel) includes 25 species of cave-dwelling blind fish (cavefish) and more than 30 surface-dwelling species with normal vision. Cave environments are dark and generally nutrient-poor with few predators. Cavefish of several genera evolved convergent morphological adaptations in visual, pigmentation, brain, olfactory, and digestive systems. We compared brain morphology and gene expression patterns in a cavefish Sinocyclocheilus anophthalmus with those of a closely related surface-dwelling species S. angustiporus. Results showed that cavefish have a longer olfactory tract and a much smaller optic tectum than surface fish. Transcriptomics by RNA-seq revealed that many genes upregulated in cavefish are related to lysosomes and the degradation and metabolism of proteins, amino acids, and lipids. Genes downregulated in cavefish tended to involve "activation of gene expression in cholesterol biosynthesis" and cholesterol degradation in the brain. Genes encoding Srebfs (sterol regulatory element-binding transcription factors) and Srebf targets, including enzymes in cholesterol synthesis, were downregulated in cavefish brains compared with surface fish brains. The gene encoding Cyp46a1, which eliminates cholesterol from the brain, was also downregulated in cavefish brains, while the total level of cholesterol in the brain remained unchanged. Cavefish brains misexpressed several genes encoding proteins in the hypothalamus-pituitary axis, including Trh, Sst, Crh, Pomc, and Mc4r. These results suggest that the rate of lipid biosynthesis and breakdown may both be depressed in golden-line cavefish brains but that the lysosome recycling rate may be increased in cavefish; properties that might be related to differences in nutrient availability in caves.

17.
Environ Pollut ; 234: 279-287, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29182972

RESUMO

People living a subsistence lifestyle in the Arctic are highly exposed to persistent organic pollutants, including polychlorinated biphenyls (PCBs). Formerly Used Defense (FUD) sites are point sources of PCB pollution; the Arctic contains thousands of FUD sites, many co-located with indigenous villages. We investigated PCB profiles and biological effects in freshwater fish (Alaska blackfish [Dallia pectoralis] and ninespine stickleback [Pungitius pungitius]) living upstream and downstream of the Northeast Cape FUD site on St. Lawrence Island in the Bering Sea. Despite extensive site remediation, fish remained contaminated with PCBs. Vitellogenin concentrations in males indicated exposure to estrogenic contaminants, and some fish were hypothyroid. Downstream fish showed altered DNA methylation in gonads and altered gene expression related to DNA replication, response to DNA damage, and cell signaling. This study demonstrates that, even after site remediation, contaminants from Cold War FUD sites in remote regions of the Arctic remain a potential health threat to local residents - in this case, Yupik people who had no influence over site selection and use by the United States military.


Assuntos
Disruptores Endócrinos/farmacologia , Alimentos Marinhos/análise , Smegmamorpha/genética , Smegmamorpha/metabolismo , Alaska , Animais , Regiões Árticas , Disruptores Endócrinos/análise , Disruptores Endócrinos/metabolismo , Recuperação e Remediação Ambiental , Feminino , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Contaminação de Alimentos/análise , Inocuidade dos Alimentos , Água Doce/análise , Humanos , Ilhas , Masculino , Bifenilos Policlorados/análise , Smegmamorpha/crescimento & desenvolvimento , Vitelogeninas/genética , Vitelogeninas/metabolismo , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/farmacologia
18.
DNA Repair (Amst) ; 5(5): 556-65, 2006 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-16513431

RESUMO

The Fanconi anemia (FA) protein FANCE is an essential component of the nuclear FA core complex, which is required for monoubiquitination of the downstream target FANCD2, an important step in the FA pathway of DNA cross-link repair. FANCE is predominantly localized in the nucleus and acts as a molecular bridge between the FA core complex and FANCD2, through direct binding of both FANCC and FANCD2. At present, it is poorly understood how the nuclear accumulation of FANCE is regulated and therefore we investigated the nuclear localization of this FA protein. We found that FANCE has a strong tendency to localize in the nucleus, since the addition of a nuclear export signal does not interfere with the nuclear localization of FANCE. We also demonstrate that the nuclear accumulation of FANCE does not rely solely on its nuclear localization signal motifs, but also on FANCC. The other FA proteins are not involved in the nuclear accumulation of FANCE, indicating a tight relationship between FANCC and FANCE, as suggested from their direct interaction. Finally, we show that the region of FANCE interacting with FANCC appears to be different from the region involved in binding FANCD2. This strengthens the idea that FANCE recruits FANCD2 to the core complex, without interfering with the binding of FANCC.


Assuntos
Proteína do Grupo de Complementação C da Anemia de Fanconi/metabolismo , Proteína do Grupo de Complementação E da Anemia de Fanconi/metabolismo , Transporte Ativo do Núcleo Celular , Sequência de Aminoácidos , Sítios de Ligação , Linhagem Celular , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Proteína do Grupo de Complementação C da Anemia de Fanconi/química , Proteína do Grupo de Complementação C da Anemia de Fanconi/genética , Proteína do Grupo de Complementação E da Anemia de Fanconi/química , Proteína do Grupo de Complementação E da Anemia de Fanconi/genética , Células HeLa , Humanos , Mutagênese Sítio-Dirigida , Sinais de Exportação Nuclear/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transfecção , Técnicas do Sistema de Duplo-Híbrido
19.
Gene ; 371(2): 211-23, 2006 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-16515849

RESUMO

Fanconi anemia (FA) is a complex disease involving nine identified and two unidentified loci that define a network essential for maintaining genomic stability. To test the hypothesis that the FA network is conserved in vertebrate genomes, we cloned and sequenced zebrafish (Danio rerio) cDNAs and/or genomic BAC clones orthologous to all nine cloned FA genes (FANCA, FANCB, FANCC, FANCD1, FANCD2, FANCE, FANCF, FANCG, and FANCL), and identified orthologs in the genome database for the pufferfish Tetraodon nigroviridis. Genomic organization of exons and introns was nearly identical between zebrafish and human for all genes examined. Hydrophobicity plots revealed conservation of FA protein structure. Evolutionarily conserved regions identified functionally important domains, since many amino acid residues mutated in human disease alleles or shown to be critical in targeted mutagenesis studies are identical in zebrafish and human. Comparative genomic analysis demonstrated conserved syntenies for all FA genes. We conclude that the FA gene network has remained intact since the last common ancestor of zebrafish and human lineages. The application of powerful genetic, cellular, and embryological methodologies make zebrafish a useful model for discovering FA gene functions, identifying new genes in the network, and identifying therapeutic compounds.


Assuntos
Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Anemia de Fanconi/genética , Peixe-Zebra/genética , Sequência de Aminoácidos , Animais , Cromossomos Artificiais Bacterianos , Humanos , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA