Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Curr Drug Deliv ; 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38310439

RESUMO

In recent years, there has been an escalating interest in stimuli-responsive drug delivery systems (SRDDS) due to their ability to revolutionize the delivery of therapeutics. SRDDSs offer a multitude of benefits in comparison to conventional drug delivery systems (DDS), including spatiotemporal control of drug release, targeted delivery, and improved therapeutic efficacy. The development of various classes of stimuli-responsive DDS, such as pH-responsive, temperature-responsive, photo-responsive, redox responsive systems, has been propelled by advances in materials science, nanotechnology, and biotechnology. These systems exploit specific environmental or physiological cues to trigger drug release in a precisely controlled manner, making them highly promising for the treatment of various diseases. In this review article, an in-depth exploration of the principles, mechanisms, and applications of SRDDS in the context of diverse pathologies such as cancer, arthritis, Alzheimer's disease, atherosclerosis and tissue engineering has been provided. Furthermore, this article delves into the discussion of recent patents, market overview and the progress of research in clinical trials. Overall, this article underscores the transformative potential of SRDDS in enabling personalized, precise, and effective drug delivery for the treatment of the above-mentioned diseases.

2.
Recent Pat Nanotechnol ; 17(4): 284-306, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35616677

RESUMO

The advent of technology provides a solution to various drug delivery-related problems by undertaking the development of a better drug delivery system, i.e., nano-sized drug delivery systems as they have shown huge prospects for effective delivery of drugs in the body. Nanostructured lipid carriers (NLCs) are such type of novel drug delivery system in which lipids of both solid and liquid types are used as a core for the disorganized matrix, which prevents the solid lipid crystallization and increases drug payload. They are generally composed of solid and liquid lipids, emulsifiers, drugs, and other various additives, which are selected based on purity, chemical stability, the concentration of materials required, compatibility, biodegradability, processing type, cost, and their regulatory status. Placing bioactives into nanostructured lipid carriers (NLCs) has enhanced pharmacokinetic characteristics by increasing therapeutic functionality and prolonging release from these carrier systems. In our opinion, the search involves two steps viz. fabrication strategies, production methods, and the impact of various types of substances on them, as well as the release mechanism and targeting modalities. In addition to other applications, the use of NLCs in gene therapy has marked a promising path for new and better drug delivery systems. Further development of various dosage forms using NLCs, like NLC based hydrogels, is being done for improving the overall aesthetic properties, leading to the desired therapeutic effect of the incorporated active. This review highlights several elements of NLCs, such as structural model and types, excipients utilized, factors affecting NLC production, preparation techniques, characterization, current applications, patents, challenges, and opportunities.


Assuntos
Portadores de Fármacos , Nanoestruturas , Portadores de Fármacos/química , Lipídeos/química , Patentes como Assunto , Sistemas de Liberação de Medicamentos , Nanoestruturas/química , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA