RESUMO
K-Ras and H-Ras share identical effectors and have similar properties; however, the high degree of tumor-type specificity associated with K-Ras and H-Ras mutations suggests that they have unique roles in oncogenesis. Here, we report that oncogenic K-Ras, but not H-Ras, suppresses non-canonical Wnt/Ca(2+) signaling, an effect that contributes strongly to its tumorigenic properties. K-Ras does this by binding to calmodulin and so reducing CaMKii activity and expression of Fzd8. Restoring Fzd8 in K-Ras mutant pancreatic cells suppresses malignancy, whereas depletion of Fzd8 in H-Ras(V12)-transformed cells enhances their tumor initiating capacity. Interrupting K-Ras-calmodulin binding using genetic means or by treatment with an orally active protein kinase C (PKC)-activator, prostratin, represses tumorigenesis in K-Ras mutant pancreatic cancer cells. These findings provide an alternative way to selectively target this "undruggable" protein.
Assuntos
Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Receptores de Superfície Celular/metabolismo , Via de Sinalização Wnt , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Calmodulina/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Genes ras , Humanos , Camundongos , Dados de Sequência Molecular , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Papiloma/metabolismo , Ésteres de Forbol/administração & dosagem , Fosforilação , Ligação Proteica/efeitos dos fármacosRESUMO
Next-generation sequencing of human tumours has refined our understanding of the mutational processes operative in cancer initiation and progression, yet major questions remain regarding the factors that induce driver mutations and the processes that shape mutation selection during tumorigenesis. Here we performed whole-exome sequencing on adenomas from three mouse models of non-small-cell lung cancer, which were induced either by exposure to carcinogens (methyl-nitrosourea (MNU) and urethane) or by genetic activation of Kras (Kras(LA2)). Although the MNU-induced tumours carried exactly the same initiating mutation in Kras as seen in the Kras(LA2) model (G12D), MNU tumours had an average of 192 non-synonymous, somatic single-nucleotide variants, compared with only six in tumours from the Kras(LA2) model. By contrast, the Kras(LA2) tumours exhibited a significantly higher level of aneuploidy and copy number alterations compared with the carcinogen-induced tumours, suggesting that carcinogen-induced and genetically engineered models lead to tumour development through different routes. The wild-type allele of Kras has been shown to act as a tumour suppressor in mouse models of non-small-cell lung cancer. We demonstrate that urethane-induced tumours from wild-type mice carry mostly (94%) Kras Q61R mutations, whereas those from Kras heterozygous animals carry mostly (92%) Kras Q61L mutations, indicating a major role for germline Kras status in mutation selection during initiation. The exome-wide mutation spectra in carcinogen-induced tumours overwhelmingly display signatures of the initiating carcinogen, while adenocarcinomas acquire additional C > T mutations at CpG sites. These data provide a basis for understanding results from human tumour genome sequencing, which has identified two broad categories of tumours based on the relative frequency of single-nucleotide variations and copy number alterations, and underline the importance of carcinogen models for understanding the complex mutation spectra seen in human cancers.
Assuntos
Transformação Celular Neoplásica/induzido quimicamente , Transformação Celular Neoplásica/genética , Genes ras/genética , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/genética , Mutação/genética , Proteína Oncogênica p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Adenocarcinoma/induzido quimicamente , Adenocarcinoma/genética , Animais , Carcinógenos/toxicidade , Carcinoma Pulmonar de Células não Pequenas/induzido quimicamente , Carcinoma Pulmonar de Células não Pequenas/genética , Variações do Número de Cópias de DNA/genética , Progressão da Doença , Feminino , Instabilidade Genômica/genética , Mutação em Linhagem Germinativa/genética , Humanos , Masculino , Metilnitrosoureia/toxicidade , Camundongos , Modelos Genéticos , Mutação Puntual/genética , Uretana/toxicidadeRESUMO
Epithelial-mesenchymal transition (EMT) is thought to be an important, possibly essential, component of the process of tumor dissemination and metastasis. About 20%-30% of Hras mutant mouse skin carcinomas induced by chemical initiation/promotion protocols have undergone EMT. Reduced exposure to TPA-induced chronic inflammation causes a dramatic reduction in classical papillomas and squamous cell carcinomas (SCCs), but the mice still develop highly invasive carcinomas with EMT properties, reduced levels of Hras and Egfr signaling, and frequent Ink4/Arf deletions. Deletion of Hras from the mouse germline also leads to a strong reduction in squamous tumor development, but tumors now acquire activating Kras mutations and exhibit more aggressive metastatic properties. We propose that invasive carcinomas can arise by different genetic and biological routes dependent on exposure to chronic inflammation and possibly from different target cell populations within the skin. Our data have implications for the use of inhibitors of inflammation or of Ras/Egfr pathway signaling for prevention or treatment of invasive cancers.
Assuntos
Carcinoma de Células Escamosas/patologia , Inflamação/patologia , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Transdução de Sinais , Neoplasias Cutâneas/patologia , Animais , Carcinoma de Células Escamosas/genética , Proteínas Inibidoras de Quinase Dependente de Ciclina/genética , Transição Epitelial-Mesenquimal , Receptores ErbB/metabolismo , Dosagem de Genes , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Marcadores Genéticos/genética , Camundongos , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética , Neoplasias Cutâneas/genéticaRESUMO
Germline polymorphisms in model organisms and humans influence susceptibility to complex trait diseases such as inflammation and cancer. Mice of the Mus spretus species are resistant to tumour development, and crosses between M. spretus and susceptible Mus musculus strains have been used to map locations of genetic variants that contribute to skin cancer susceptibility. We have integrated germline polymorphisms with gene expression in normal skin from a M. musculus x M. spretus backcross to generate a network view of the gene expression architecture of mouse skin. Here we demonstrate how this approach identifies expression motifs that contribute to tissue organization and biological functions related to inflammation, haematopoiesis, cell cycle control and tumour susceptibility. Motifs associated with inflammation, epidermal barrier function and proliferation are differentially regulated in backcross mice susceptible or resistant to tumour development. The intestinal stem cell marker Lgr5 is identified as a candidate master regulator of the hair follicle, and the vitamin D receptor (Vdr) is linked to coordinated control of epidermal barrier function, inflammation and tumour susceptibility.
Assuntos
Predisposição Genética para Doença/genética , Inflamação/genética , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Pele/metabolismo , Pele/patologia , Animais , Ciclo Celular/genética , Cruzamentos Genéticos , Feminino , Regulação da Expressão Gênica/genética , Folículo Piloso/metabolismo , Hematopoese/genética , Inflamação/patologia , Masculino , Camundongos , Locos de Características Quantitativas , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismoRESUMO
Pulmonary adenoma susceptibility 1 (Pas1) is the major mouse lung cancer susceptibility locus on chromosome 6 (ref. 1). Kras2 is a common target of somatic mutation in chemically induced mouse lung tumors and is a candidate Pas1 gene. M. spretus mice (SPRET/Ei) carry a Pas1 resistance haplotype for chemically induced lung tumors. We demonstrate that the SPRET/Ei Pas1 allele is switched from resistance to susceptibility by fixation of the parental origin of the mutant Kras2 allele. This switch correlates with low expression of endogenous Kras2 in SPRET/Ei. We propose that the Pas1 modifier effect is due to Kras2, and that a sensitive balance between the expression levels of wild-type and mutant alleles determines lung tumor susceptibility. These data demonstrate that cancer predisposition should also be considered in the context of somatic events and could have major implications for the design of human association studies to identify cancer susceptibility genes.
Assuntos
Neoplasias Pulmonares/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Adenoma/induzido quimicamente , Adenoma/genética , Alelos , Animais , Carcinógenos/toxicidade , Feminino , Predisposição Genética para Doença , Neoplasias Pulmonares/induzido quimicamente , Masculino , Camundongos , Modelos Genéticos , Mutação , Oncogenes , Fatores de Risco , Uretana/toxicidadeRESUMO
Mutational activation of KRAS is a common oncogenic event in lung cancer and other epithelial cancer types. Efforts to develop therapies that counteract the oncogenic effects of mutant KRAS have been largely unsuccessful, and cancers driven by mutant KRAS remain among the most refractory to available treatments. Studies undertaken over the past decades have produced a wealth of information regarding the clinical relevance of KRAS mutations in lung cancer. Mutant Kras-driven mouse models of cancer, together with cellular and molecular studies, have provided a deeper appreciation for the complex functions of KRAS in tumorigenesis. However, a much more thorough understanding of these complexities is needed before clinically effective therapies targeting mutant KRAS-driven cancers can be achieved.
Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Mutação , Proteínas Proto-Oncogênicas/genética , Proteínas ras/genética , Animais , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/terapia , Transformação Celular Neoplásica/genética , Suscetibilidade a Doenças , Técnicas de Silenciamento de Genes , Terapia Genética , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/terapia , Camundongos , Neoplasias Experimentais/genética , Neoplasias Experimentais/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas p21(ras) , RNA Interferente Pequeno/genética , Transdução de Sinais , Proteínas ras/metabolismoRESUMO
BACKGROUND: Recombinant human interleukin-2 (rhIL-2, aldesleukin) is Food and Drug Administration approved for the treatment of metastatic melanoma and renal cell carcinoma and has achieved durable response in a subset of patients. However, its utility as an immunotherapeutic drug is limited by undesirable activation of immune suppressive regulatory T cells (Tregs) and a short half-life requiring frequent high dose administration, leading to unacceptable toxicities. We have engineered MDNA11, a long-acting IL-2 superkine, to overcome these limitations by (1) modifying receptor selectivity in favor of anti-cancer immune cells to increase therapeutic efficacy and (2) fusion to human albumin to extend the pharmacokinetic (PK) profile, circumventing the need for frequent dosing. METHODS: MDNA11 was evaluated using in vitro and in vivo studies including: binding analyses to measure receptor affinity, IL-2 pathway signaling, PK studies in mice, and efficacy studies in syngeneic tumor models as single agent and in combination with immune checkpoint inhibitors. Finally, the safety and pharmacodynamic profile of MDNA11 was assessed in non-human primate (NHP). RESULTS: Binding studies with MDNA11 demonstrated increased affinity for IL-2Rß (CD122) and no binding to IL-2Rα (CD25). As a result, MDNA11 exhibits reduced/limited Treg stimulation while triggering an enhanced activation of natural killer and naïve CD8 T cells compared with rhIL-2. When administered to animals with pre-established tumors, MDNA11 controlled tumor growth in a monotherapy setting and in combination with anti-PD1 or anti-CTLA4 to induce durable tumor clearance with a once weekly dosing regimen. In a NHP model, MDNA11 was well tolerated while triggering durable and potent immune responses including expansion of lymphocytes without significant effect on Tregs and eosinophils, the latter been linked to an increased risk of vascular leak syndrome. CONCLUSION: MDNA11 is a next generation long-acting IL-2 immunotherapeutic with a highly favorable pharmacodynamic profile that translates to a strong therapeutic efficacy in preclinical tumor models and a strong and durable immune response in NHP.
Assuntos
Linfócitos T CD8-Positivos/metabolismo , Citocinas/metabolismo , Imunidade/imunologia , Imunoterapia/métodos , Interleucina-2/imunologia , Animais , Camundongos , PrimatasRESUMO
The commonly mutated human KRAS oncogene encodes two distinct KRAS4A and KRAS4B proteins generated by differential splicing. We demonstrate here that coordinated regulation of both isoforms through control of splicing is essential for development of Kras mutant tumors. The minor KRAS4A isoform is enriched in cancer stem-like cells, where it responds to hypoxia, while the major KRAS4B is induced by ER stress. KRAS4A splicing is controlled by the DCAF15/RBM39 pathway, and deletion of KRAS4A or pharmacological inhibition of RBM39 using Indisulam leads to inhibition of cancer stem cells. Our data identify existing clinical drugs that target KRAS4A splicing, and suggest that levels of the minor KRAS4A isoform in human tumors can be a biomarker of sensitivity to some existing cancer therapeutics.
Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Células-Tronco Neoplásicas/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas de Ligação a RNA/metabolismo , Células A549 , Animais , Western Blotting , Proliferação de Células , Citometria de Fluxo , Xenoenxertos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Camundongos Knockout , Reação em Cadeia da Polimerase , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas de Ligação a RNA/genéticaRESUMO
HHT shows clinical variability within and between families. Organ site and prevalence of arteriovenous malformations (AVMs) depend on the HHT causative gene and on environmental and genetic modifiers. We tested whether variation in the functional ENG allele, inherited from the unaffected parent, alters risk for pulmonary AVM in HHT1 mutation carriers who are ENG haploinsufficient. Genetic association was found between rs10987746 of the wild type ENG allele and presence of pulmonary AVM [relative risk = 1.3 (1.0018-1.7424)]. The rs10987746-C at-risk allele associated with lower expression of ENG RNA in a panel of human lymphoblastoid cell lines (P = 0.004). Moreover, in angiogenically active human lung adenocarcinoma tissue, but not in uninvolved quiescent lung, rs10987746-C was correlated with expression of PTPN14 (P = 0.004), another modifier of HHT. Quantitative TAQMAN expression analysis in a panel of normal lung tissues from 69 genetically heterogeneous inter-specific backcross mice, demonstrated strong correlation between expression levels of Eng, Acvrl1, and Ptpn14 (r2 = 0.75-0.9, P < 1 × 10(-12)), further suggesting a direct or indirect interaction between these three genes in lung in vivo. Our data indicate that genetic variation within the single functional ENG gene influences quantitative and/or qualitative differences in ENG expression that contribute to risk of pulmonary AVM in HHT1, and provide correlative support for PTPN14 involvement in endoglin/ALK1 lung biology in vivo. PTPN14 has been shown to be a negative regulator of Yap/Taz signaling, which is implicated in mechanotransduction, providing a possible molecular link between endoglin/ALK1 signaling and mechanical stress. EMILIN2, which showed suggestive genetic association with pulmonary AVM, is also reported to interact with Taz in angiogenesis. Elucidation of the molecular mechanisms regulating these interactions in endothelial cells may ultimately provide more rational choices for HHT therapy.
RESUMO
Analysis of gene expression patterns in normal tissues and their perturbations in tumours can help to identify the functional roles of oncogenes or tumour suppressors and identify potential new therapeutic targets. Here, gene expression correlation networks were derived from 92 normal human lung samples and patient-matched adenocarcinomas. The networks from normal lung show that NKX2-1 is linked to the alveolar type 2 lineage, and identify PEBP4 as a novel marker expressed in alveolar type 2 cells. Differential correlation analysis shows that the NKX2-1 network in tumours includes pathways associated with glutamate metabolism, and identifies Vaccinia-related kinase (VRK1) as a potential drug target in a tumour-specific mitotic network. We show that VRK1 inhibition cooperates with inhibition of poly (ADP-ribose) polymerase signalling to inhibit growth of lung tumour cells. Targeting of genes that are recruited into tumour mitotic networks may provide a wider therapeutic window than that seen by inhibition of known mitotic genes.
Assuntos
Adenocarcinoma/patologia , Linhagem da Célula , Neoplasias Pulmonares/patologia , Pulmão/patologia , Mitose , Adenocarcinoma/genética , Perfilação da Expressão Gênica , Humanos , Neoplasias Pulmonares/genéticaRESUMO
Alterations in DNA copy number contribute to the development and progression of cancers and are common in epithelial tumors. We have used array Comparative Genomic Hybridization (aCGH) to visualize DNA copy number alterations across the genomes of lung tumors in the Kras(LA2) model of lung cancer. Copy number gain involving the Kras locus, as focal amplification or whole chromosome gain, is the most common alteration in these tumors and with a prevalence that increased significantly with increasing tumor size. Furthermore, Kras amplification was the only major genomic event among the smallest lung tumors, suggesting that this alteration occurs early during the development of mutant Kras-driven lung cancers. Recurring gains and deletions of other chromosomes occur progressively more frequently among larger tumors. These results are in contrast to a previous aCGH analysis of lung tumors from Kras(LA2) mice on a mixed genetic background, in which relatively few DNA copy number alterations were observed regardless of tumor size. Our model features the Kras(LA2) allele on the inbred FVB/N mouse strain, and in this genetic background, there is a highly statistically significant increase in level of genomic instability with increasing tumor size. These data suggest that recurring DNA copy alterations are important for tumor progression in the Kras(LA2) model of lung cancer and that the requirement for these alterations may be dependent on the genetic background of the mouse strain.
Assuntos
Genes ras , Instabilidade Genômica , Neoplasias Pulmonares/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Animais , Linhagem Celular Tumoral , Aberrações Cromossômicas , Variações do Número de Cópias de DNA , DNA de Neoplasias/genética , Modelos Animais de Doenças , Progressão da Doença , Dosagem de Genes , Regulação Neoplásica da Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BLRESUMO
BACKGROUND: Germline polymorphisms can influence gene expression networks in normal mammalian tissues and can affect disease susceptibility. We and others have shown that analysis of this genetic architecture can identify single genes and whole pathways that influence complex traits, including inflammation and cancer susceptibility. Whether germline variants affect gene expression in tumors that have undergone somatic alterations, and the extent to which these variants influence tumor progression, is unknown. RESULTS: Using an integrated linkage and genomic analysis of a mouse model of skin cancer that produces both benign tumors and malignant carcinomas, we document major changes in germline control of gene expression during skin tumor development resulting from cell selection, somatic genetic events, and changes in the tumor microenvironment. The number of significant expression quantitative trait loci (eQTL) is progressively reduced in benign and malignant skin tumors when compared to normal skin. However, novel tumor-specific eQTL are detected for several genes associated with tumor susceptibility, including IL18 (Il18), Granzyme E (Gzme), Sprouty homolog 2 (Spry2), and Mitogen-activated protein kinase kinase 4 (Map2k4). CONCLUSIONS: We conclude that the genetic architecture is substantially altered in tumors, and that eQTL analysis of tumors can identify host factors that influence the tumor microenvironment, mitogen-activated protein (MAP) kinase signaling, and cancer susceptibility.
Assuntos
Redes Reguladoras de Genes , Predisposição Genética para Doença , Inflamação/genética , Neoplasias Cutâneas/genética , Animais , Biomarcadores Tumorais/genética , Transformação Celular Neoplásica/genética , Hibridização Genômica Comparativa , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Polimorfismo Genético , Locos de Características Quantitativas , Transdução de Sinais , Neoplasias Cutâneas/metabolismoRESUMO
Kras is the most frequently mutated ras family member in lung carcinomas, whereas Hras mutations are common in tumors from stratified epithelia such as the skin. Using a Hras knock-in mouse model, we demonstrate that specificity for Kras mutations in lung and Hras mutations in skin tumors is determined by local regulatory elements in the target ras genes. Although the Kras 4A isoform is dispensable for mouse development, it is the most important isoform for lung carcinogenesis in vivo and for the inhibitory effect of wild-type (WT) Kras on the mutant allele. Kras 4A expression is detected in a subpopulation of normal lung epithelial cells, but at very low levels in lung tumors, suggesting that it may not be required for tumor progression. The two Kras isoforms undergo different post-translational modifications; therefore, these findings can have implications for the design of therapeutic strategies for inhibiting oncogenic Kras activity in human cancers.
Assuntos
Éxons/genética , Genes ras/fisiologia , Neoplasias Pulmonares/genética , Mutação/genética , Proteínas Proto-Oncogênicas p21(ras)/fisiologia , Sequências Reguladoras de Ácido Nucleico/genética , Neoplasias Cutâneas/genética , Animais , Carcinógenos/toxicidade , Modelos Animais de Doenças , Humanos , Pulmão/metabolismo , Pulmão/patologia , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Transgênicos , Neoplasias Cutâneas/patologia , Uretana/toxicidadeRESUMO
The Pten and Ras pathways are disrupted or activated, respectively, in a substantial proportion of cancers. Skin tumors induced by the classical two stage carcinogenesis protocols show consistent activating mutations of the H-ras gene, but in tumors from Pten heterozygous mice, the frequency of these mutations is markedly decreased, suggesting some redundancy between these pathways. Pten heterozygous mice develop more papillomas and have earlier onset of carcinomas than their control counterparts, but molecular analysis of these tumors indicated that complete loss of Pten and activation of H-ras are mutually exclusive. Pten loss is however not functionally equivalent to H-ras activation, as Pten-/- tumors occur earlier and are generally more aggressive. Tumors with Pten loss or H-ras activation have different biochemical properties, suggestive of alternative routes to malignancy. These findings in this mouse model have important implications for the rational design of new targeted therapies for human tumors.
Assuntos
Regulação Neoplásica da Expressão Gênica , PTEN Fosfo-Hidrolase/metabolismo , Neoplasias Cutâneas/metabolismo , Proteínas ras/metabolismo , Animais , Carcinoma/metabolismo , Heterozigoto , Humanos , Camundongos , Modelos Biológicos , Mutação , Neoplasias/etiologia , Neoplasias/metabolismo , Neoplasias/terapia , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Transdução de Sinais , Células-Tronco , TransgenesRESUMO
LAF-4, which encodes a nuclear protein with transactivation potential, is fused to the MLL gene in acute lymphoblastic leukemia (ALL). We identified LAF-4 as a gene that is transcriptionally deregulated in breast tumors and thus may have a pathological role in mammary tumorigenesis. In line with the previous finding that LAF-4 expression is tissue specific, we did not detect any LAF-4 mRNA in normal mammary epithelial cell lines. However, 2 of 5 breast cancer cell lines were found to express LAF-4 at both the RNA and protein levels. In 2 of 9 primary tumor-normal pairs, the expression of LAF-4 was clearly elevated in the tumor tissue. Using RNA in situ hybridization, we demonstrated that LAF-4 is expressed in mammary tumor cells but not in normal acini. In a group of 64 primary human breast tumors, we found that LAF-4 was overexpressed in approximately 20% of the cases. Although epigenetic changes may be involved in altered expression of some genes, differences in LAF-4 expression were not associated with DNA methylation of the predicted promoter region. Our results suggest that LAF-4 may be a proto-oncogene that is transcriptionally activated in some cases of breast cancer.
Assuntos
Neoplasias da Mama/genética , Proteínas Nucleares/genética , Mama/patologia , Mama/fisiopatologia , Neoplasias da Mama/patologia , Neoplasias da Mama/cirurgia , Metilação de DNA , DNA de Neoplasias/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Menopausa , Regiões Promotoras Genéticas , Proto-Oncogene Mas , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Gênica , Células Tumorais CultivadasRESUMO
Pten heterozygous (Pten+/-) mice develop increased papilloma numbers and show decreased carcinoma latency time in comparison with controls after skin treatment with dimethyl benzanthracene (DMBA) and tetradecanoyl-phorbol acetate (TPA). H-ras mutation is normally a hallmark of DMBA-TPA-induced skin tumors, but 70% of carcinomas from Pten+/- mice do not exhibit this mutation, and in all cases have lost the wild-type Pten allele. Tumors that retain the Pten wild-type allele also have H-ras mutations, indicating that activation of H-ras and complete loss of Pten are mutually exclusive events in skin carcinomas. Mitogen-activated protein kinase (MAPK) is consistently activated in the tumors with H-ras mutations, but is strongly down-regulated in Pten-/- tumors, suggesting that this pathway is dispensable for skin carcinoma formation. These data have important implications in designing individual therapeutic strategies for the treatment of cancer.