Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 22(46): 27338-27347, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33231219

RESUMO

The 266 nm photodissociation dynamics of 1-iodopropane and 2-iodopropane were studied using photofragment translational energy spectroscopy using vacuum ultraviolet (VUV) photoionization and electron impact ionization detection of products. The photochemistry of 1-iodopropane was found to be similar to that of iodomethane and iodoethane, with dominant production of I*(2P1/2), and no evidence (<0.21%) for HI + alkene formation. Significantly different behavior was observed for 2-iodopropane, with dominant production of ground state I(2P3/2), and a HI yield >10.5%. The anisotropy (ß) parameters for all channels approached the limiting value of 2.0, indicating that 1,2-HI elimination occurs on subpicosecond timescales, like direct C-I bond fission, following excitation to 3Q0. The HI translational energy and angular distributions were similar to those for I(2P3/2), suggesting that motion of the heavy I atom in HI is largely derived from the repulsive nature of the 1Q1 surface correlating to R + I with the light H atom picked up by ground state I late in the exit channel producing highly vibrationally excited HI.

2.
J Phys Chem A ; 117(51): 13967-75, 2013 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-24325333

RESUMO

The reactions of phenyl radicals with propene have been studied at collision energies of 84 and 108 kJ/mol using the crossed molecular beams technique. The branching ratios between methyl radical elimination forming C8H8 and H-atom elimination forming C9H10 were found to be 10 ± 1:1 at 84 kJ/mol and 3 ± 1:1 at 108 kJ/mol. By using "soft" 9.9 eV vacuum ultraviolet photoionization for product detection, we were able to observe both product channels with negligible fragmentation of C9H10 to C8H8(+). Our finding that CH3 elimination is dominant is consistent with conclusions from a recent study employing a pyrolysis molecular beam reactor using photoionization detection. However, our C8H8/C9H10 branching ratios are significantly larger than inferred from previous CMB experiments and RRKM calculations. For comparison, we have also studied the reactions of phenyl radicals with trans-2-butene at Ecoll = 97 kJ/mol. In this case, the symmetry of trans-2-butene makes both alkene addition sites chemically equivalent. The intermediate formed in the reaction with trans-2-butene is similar to the 2-carbon addition intermediate in the reaction with propene. We observed only methyl elimination in the reaction with trans-2-butene, with no evidence for H-atom elimination, consistent with conclusions that C-C bond fission is the most favorable channel in these systems. Analogies between phenyl radical reactions with propene and trans-2-butene are used to provide insight into the mechanisms in the propene reaction.

3.
ACS Appl Mater Interfaces ; 10(33): 27780-27786, 2018 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-30019887

RESUMO

Transition metal dichalcogenides (TMDs) such as MoSe2 and WSe2 are efficient materials for converting solar energy to electrical energy in photoelectrochemical photovoltaic cells. One limiting factor of these liquid junction solar cells is that photogenerated oxidation products accumulate on the electrode surface and decrease the photocurrent efficiency. However, it is unclear where the reaction products accumulate on the electrode surface and how they impact the local photoelectrochemical response. This open question is especially important for the structurally heterogeneous TMD nanoflake thin-film electrodes that are promising for large-area solar energy conversion applications. Here, we use a single-nanoflake photoelectrochemical and Raman microscopy approach to probe how the photogenerated I2/I3- products impact the photocurrent collection efficiency and the onset potential in MoSe2-nanoflake|I-/I2|Pt photoelectrochemical solar cells. We observed localized I2/I3- deposition on all types of MoSe2 nanoflake surface motifs, including basal planes, perimeter edges, and interior step edges. Illuminated nanoflake spots with the highest photocurrent collection efficiency are the first to be limited by I2/I3- formation under high-intensity illumination. Interestingly, I2/I3- formation occurs on illuminated surface spots that have the lowest photocurrent onset potential for iodide oxidation, corresponding to the highest open circuit voltage ( VOC). The VOC shifts could be attributed to variations in the surface reaction kinetics or doping density across the nanoflake. Our results highlight important limiting factors of nanoflake thin-film TMD liquid junction photovoltaics under concentrated solar illumination intensities.

4.
Rev Sci Instrum ; 87(6): 063106, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27370425

RESUMO

A method is described for generating intense pulsed vacuum ultraviolet (VUV) and extreme ultraviolet (XUV) laser radiation by resonance enhanced four-wave mixing of commercial pulsed nanosecond lasers in laser vaporized mercury under windowless conditions. By employing noncollinear mixing of the input beams, the need of dispersive elements such as gratings for separating the VUV/XUV from the residual UV and visible beams is eliminated. A number of schemes are described, facilitating access to the 9.9-14.6 eV range. A simple and convenient scheme for generating wavelengths of 125 nm, 112 nm, and 104 nm (10 eV, 11 eV, and 12 eV) using two dye lasers without the need for dye changes is described.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA