Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Infect Immun ; 86(7)2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29661932

RESUMO

Some members of the genus Chlamydia, including the human pathogen Chlamydia trachomatis, infect multiple tissues, including the genital and gastrointestinal (GI) tracts. However, it is unknown if bacterial targeting to these sites is mediated by multifunctional or distinct chlamydial factors. We previously showed that disruption of individual large clostridial toxin homologs encoded within the Chlamydia muridarum plasticity zone were not critical for murine genital tract infection. Here, we assessed whether cytotoxin genes contribute to C. muridarum GI tropism. Infectivity and shedding of wild-type (WT) C. muridarum and three mutants containing nonsense mutations in different cytotoxin genes, tc0437, tc0438, and tc0439, were compared in mouse genital and GI infection models. One mutant, which had a nonsense mutation in tc0439, was highly attenuated for GI infection and had a GI 50% infectious dose (ID50) that was 1,000 times greater than that of the WT. GI inoculation with this mutant failed to elicit anti-chlamydial antibodies or to protect against subsequent genital tract infection. Genome sequencing of the tc0439 mutant revealed additional chromosomal mutations, and phenotyping of additional mutants suggested that the GI attenuation might be linked to a nonsense mutation in tc0600 The molecular mechanism underlying this dramatic difference in tissue-tropic virulence is not fully understood. However, isolation of these mutants demonstrates that distinct chlamydial chromosomal factors mediate chlamydial tissue tropism and provides a basis for vaccine initiatives to isolate chlamydia strains that are attenuated for genital infection but retain the ability to colonize the GI tract and elicit protective immune responses.


Assuntos
Infecções por Chlamydia/etiologia , Chlamydia muridarum/patogenicidade , Cromossomos/fisiologia , Gastroenteropatias/etiologia , Infecções do Sistema Genital/etiologia , Tropismo , Animais , Infecções por Chlamydia/imunologia , Códon sem Sentido , Citotoxinas/genética , Feminino , Gastroenteropatias/imunologia , Trato Gastrointestinal/microbiologia , Genitália/microbiologia , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Especificidade de Órgãos , Polimorfismo de Nucleotídeo Único , Infecções do Sistema Genital/imunologia
2.
Sci Rep ; 8(1): 17135, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30459320

RESUMO

We compared the gut microbial populations in 100 women, from rural Ghana and urban US [50% lean (BMI < 25 kg/m2) and 50% obese (BMI ≥ 30 kg/m2)] to examine the ecological co-occurrence network topology of the gut microbiota as well as the relationship of short chain fatty acids (SCFAs) with obesity. Ghanaians consumed significantly more dietary fiber, had greater microbial alpha-diversity, different beta-diversity, and had a greater concentration of total fecal SCFAs (p-value < 0.002). Lean Ghanaians had significantly greater network density, connectivity and stability than either obese Ghanaians, or lean and obese US participants (false discovery rate (FDR) corrected p-value ≤ 0.01). Bacteroides uniformis was significantly more abundant in lean women, irrespective of country (FDR corrected p < 0.001), while lean Ghanaians had a significantly greater proportion of Ruminococcus callidus, Prevotella copri, and Escherichia coli, and smaller proportions of Lachnospiraceae, Bacteroides and Parabacteroides. Lean Ghanaians had a significantly greater abundance of predicted microbial genes that catalyzed the production of butyric acid via the fermentation of pyruvate or branched amino-acids, while obese Ghanaians and US women (irrespective of BMI) had a significantly greater abundance of predicted microbial genes that encoded for enzymes associated with the fermentation of amino-acids such as alanine, aspartate, lysine and glutamate. Similar to lean Ghanaian women, mice humanized with stool from the lean Ghanaian participant had a significantly lower abundance of family Lachnospiraceae and genus Bacteroides and Parabacteroides, and were resistant to obesity following 6-weeks of high fat feeding (p-value < 0.01). Obesity-resistant mice also showed increased intestinal transcriptional expression of the free fatty acid (Ffa) receptor Ffa2, in spite of similar fecal SCFAs concentrations. We demonstrate that the association between obesity resistance and increased predicted ecological connectivity and stability of the lean Ghanaian microbiota, as well as increased local SCFA receptor level, provides evidence of the importance of robust gut ecologic network in obesity.


Assuntos
Ácidos Graxos Voláteis/metabolismo , Comportamento Alimentar , Microbioma Gastrointestinal/fisiologia , Obesidade/microbiologia , Adiposidade , Adulto , Negro ou Afro-Americano , Índice de Massa Corporal , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos Voláteis/análise , Transplante de Microbiota Fecal , Feminino , Microbioma Gastrointestinal/genética , Gana , Humanos , Obesidade/metabolismo , Receptores de Superfície Celular/genética , Receptores Acoplados a Proteínas G/genética , África do Sul
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA