Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35042774

RESUMO

Termites are model social organisms characterized by a polyphenic caste system. Subterranean termites (Rhinotermitidae) are ecologically and economically important species, including acting as destructive pests. Rhinotermitidae occupies an important evolutionary position within the clade representing a transitional taxon between the higher (Termitidae) and lower (other families) termites. Here, we report the genome, transcriptome, and methylome of the Japanese subterranean termite Reticulitermes speratus Our analyses highlight the significance of gene duplication in social evolution in this termite. Gene duplication associated with caste-biased gene expression was prevalent in the R. speratus genome. The duplicated genes comprised diverse categories related to social functions, including lipocalins (chemical communication), cellulases (wood digestion and social interaction), lysozymes (social immunity), geranylgeranyl diphosphate synthase (social defense), and a novel class of termite lineage-specific genes with unknown functions. Paralogous genes were often observed in tandem in the genome, but their expression patterns were highly variable, exhibiting caste biases. Some of the assayed duplicated genes were expressed in caste-specific organs, such as the accessory glands of the queen ovary and the frontal glands of soldier heads. We propose that gene duplication facilitates social evolution through regulatory diversification, leading to caste-biased expression and subfunctionalization and/or neofunctionalization conferring caste-specialized functions.


Assuntos
Genômica , Proteínas de Insetos/metabolismo , Isópteros/fisiologia , Evolução Social , Transcriptoma , Animais , Evolução Biológica , Celulases/metabolismo , Feminino , Duplicação Gênica , Expressão Gênica , Perfilação da Expressão Gênica , Proteínas de Insetos/genética , Isópteros/genética
2.
Mol Biol Evol ; 38(9): 3820-3831, 2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34426845

RESUMO

Intracellular endosymbionts have reduced genomes that progressively lose genes at a timescale of tens of million years. We previously reported that gene loss rate is linked to mutation rate in Blattabacterium, however, the mechanisms causing gene loss are not yet fully understood. Here, we carried out comparative genomic analyses on the complete genome sequences of a representative set of 67 Blattabacterium strains, with sizes ranging between 511 and 645 kb. We found that 200 of the 566 analyzed protein-coding genes were lost in at least one lineage of Blattabacterium, with the most extreme case being one gene that was lost independently in 24 lineages. We found evidence for three mechanisms influencing gene loss in Blattabacterium. First, gene loss rates were found to increase exponentially with the accumulation of substitutions. Second, genes involved in vitamin and amino acid metabolism experienced relaxed selection in Cryptocercus and Mastotermes, possibly triggered by their vertically inherited gut symbionts. Third, we found evidence of epistatic interactions among genes leading to a "domino effect" of gene loss within pathways. Our results highlight the complexity of the process of genome erosion in an endosymbiont.


Assuntos
Bacteroidetes/genética , Baratas/microbiologia , Genoma Bacteriano , Taxa de Mutação , Simbiose/genética , Animais , Seleção Genética
3.
Mol Phylogenet Evol ; 166: 107318, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34562575

RESUMO

Cryptocercus Scudder, a genus of wingless, subsocial cockroaches, has low vagility but exhibits a disjunct distribution in eastern and western North America, and in China, South Korea and the Russian Far East. This distribution provides an ideal model for testing hypotheses of vicariance through plate tectonics or other natural barriers versus dispersal across oceans or other natural barriers. We sequenced 45 samples of Cryptocercus to resolve phylogenetic relationships among members of the genus worldwide. We identified four types of tRNA rearrangements among samples from the Qin-Daba Mountains. Our maximum-likelihood and Bayesian phylogenetic trees, based on mitochondrial genomes and nuclear genes (18S, 28S), strongly supported six major lineages of Cryptocercus, which displayed a clear geographical distribution pattern. We used Bayesian molecular dating to estimate the evolutionary timescale of the genus, and reconstructed Cryptocercus ancestral ranges using statistical dispersal-vicariance analysis (S-DIVA) in RASP. Two dispersal events and six vicariance events for Cryptocercus were inferred with high support. The initial vicariance event occurred between American and Asian lineages at 80.5 Ma (95% credibility interval: 60.0-104.7 Ma), followed by one vicariance event within the American lineage 43.8 Ma (95% CI: 32.0-57.5 Ma), and two dispersal 31.9 Ma (95% CI: 25.8-39.5 Ma), 21.7 Ma (95% CI: 17.3-27.1 Ma) plus four vicariance events c. 29.3 Ma, 27.2 Ma, 24.8 Ma and 16.7 Ma within the Asian lineage. Our analyses provide evidence that both vicariance and dispersal have played important roles in shaping the distribution and diversity of these woodroaches.


Assuntos
Baratas , Genoma Mitocondrial , Animais , Teorema de Bayes , Evolução Biológica , Filogenia , Filogeografia
4.
Environ Microbiol ; 23(8): 4092-4097, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34097340

RESUMO

Termites harbour symbiotic spirochetes in their hindguts, which have long been considered treponemes, although they represent separate lines of descent from known species of Treponema. 'Termite gut treponemes' have a mutualistic relationship with the host termites with their physiological properties including CO2 -reductive acetogenesis, from which the resulting acetate fulfils most of the respiratory requirement of the host. Song and co-workers showed that a spirochetal isolate (strain RmG30) from a Madeira cockroach represents the earliest branching lineage of extremely diverse termite (Treponema) cluster I and was a simple homolactic fermenter, suggesting that CO2 -reductive acetogenesis exhibited by some members of termite cluster I originated via horizontal gene transfer. Phylogenomic and 16S rRNA sequence-based phylogenetic analyses indicated a deeply-branched sister clade containing termite cluster I was distinguishable as a family-level lineage. In this context, a new family, 'Termitinemataceae' has been proposed for this clade. Strain RmG30 has been designated as the type strain of Breznakiella homolactica gen. nov. sp. nov. named after John A. Breznak, an American microbiologist distinguished in termite gut microbiology. The study has posed important questions for the future, including the actual roles of the termite spirochetes in each termite lineage and the evolutionary process of their physiological properties.


Assuntos
Isópteros , Animais , Humanos , Filogenia , RNA Ribossômico 16S/genética , Spirochaetales/genética , Simbiose
5.
Proc Natl Acad Sci U S A ; 115(51): E11996-E12004, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30504145

RESUMO

Symbiotic digestion of lignocellulose in wood-feeding higher termites (family Termitidae) is a two-step process that involves endogenous host cellulases secreted in the midgut and a dense bacterial community in the hindgut compartment. The genomes of the bacterial gut microbiota encode diverse cellulolytic and hemicellulolytic enzymes, but the contributions of host and bacterial symbionts to lignocellulose degradation remain ambiguous. Our previous studies of Nasutitermes spp. documented that the wood fibers in the hindgut paunch are consistently colonized not only by uncultured members of Fibrobacteres, which have been implicated in cellulose degradation, but also by unique lineages of Spirochaetes. Here, we demonstrate that the degradation of xylan, the major component of hemicellulose, is restricted to the hindgut compartment, where it is preferentially hydrolyzed over cellulose. Metatranscriptomic analysis documented that the majority of glycoside hydrolase (GH) transcripts expressed by the fiber-associated bacterial community belong to family GH11, which consists exclusively of xylanases. The substrate specificity was further confirmed by heterologous expression of the gene encoding the predominant homolog. Although the most abundant transcripts of GH11 in Nasutitermes takasagoensis were phylogenetically placed among their homologs of Firmicutes, immunofluorescence microscopy, compositional binning of metagenomics contigs, and the genomic context of the homologs indicated that they are encoded by Spirochaetes and were most likely obtained by horizontal gene transfer among the intestinal microbiota. The major role of spirochetes in xylan degradation is unprecedented and assigns the fiber-associated Treponema clades in the hindgut of wood-feeding higher termites a prominent part in the breakdown of hemicelluloses.


Assuntos
Isópteros/microbiologia , Polissacarídeos/metabolismo , Spirochaetales/enzimologia , Spirochaetales/genética , Spirochaetales/metabolismo , Madeira/metabolismo , Animais , Celulases/genética , Celulases/metabolismo , Celulose/metabolismo , Microbioma Gastrointestinal/genética , Trato Gastrointestinal/microbiologia , Regulação Bacteriana da Expressão Gênica/genética , Transferência Genética Horizontal , Genes Bacterianos/genética , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Metagenoma/genética , Metagenômica , Filogenia , Análise de Sequência de DNA , Simbiose , Xilanos/metabolismo , Xilosidases/classificação , Xilosidases/genética , Xilosidases/metabolismo
6.
Proc Biol Sci ; 281(1789): 20140990, 2014 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-25009054

RESUMO

Termites consume an estimated 3-7 billion tonnes of lignocellulose annually, a role in nature which is unique for a single order of invertebrates. Their food is digested with the help of microbial symbionts, a relationship that has been recognized for 200 years and actively researched for at least a century. Although DNA- and RNA-based approaches have greatly refined the details of the process and the identities of the participants, the allocation of roles in space and time remains unclear. To resolve this issue, a pioneer study is reported using metabolomics to chart the in situ catabolism of (13)C-cellulose fed to the dampwood species Hodotermopsis sjostedti. The results confirm that the secretion of endogenous cellulases by the host may be significant to the digestive process and indicate that a major contribution by hindgut bacteria is phosphorolysis of cellodextrins or cellobiose. This study provides evidence that essential amino acid acquisition by termites occurs following the lysis of microbial tissue obtained via proctodaeal trophallaxis.


Assuntos
Celulose/metabolismo , Trato Gastrointestinal/metabolismo , Isópteros/fisiologia , Metaboloma , Aminoácidos/metabolismo , Animais , Isótopos de Carbono , Trato Gastrointestinal/microbiologia , Mucosa Intestinal/metabolismo , Isópteros/metabolismo , Isópteros/microbiologia , Espectroscopia de Ressonância Magnética , Simbiose
7.
Genetica ; 142(2): 149-60, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24723149

RESUMO

Mariner-like elements (MLEs) have been isolated from various eukaryotic genomes and they are divided into 15 subfamilies, including main five subfamilies: mauritiana, cecropia, mellifera/capitata, irritans, and elegans/briggsae. In the present study, MLEs belonging to mellifera subfamily were isolated from various spiders and insects (Hymenoptera and Lepidoptera) inhabiting the South-West Islands of Japan and neighboring regions. MLEs isolated from 15 different species formed a distinct novel cluster in mellifera subfamily. MLEs obtained from three different species [i.e., the bee Amegilla senahai subflavescens (Amsmar1), the wasp Campsomeris sp. (Casmar1), and the swallowtail butterfly Pachliopta aristolochiae (Paamar1)] contained an intact open reading frame that encoded a putative transposase. These transposases exhibited high similarity of 97.9% among themselves. In case of Casmar1, the presence of an intact ORF was found in high frequencies (i.e., 11 out of 12 clones). In addition, these transposases also showed the presence of a terminal inverted repeat-binding motif, DD(34)D and two highly conserved amino acid motifs, (W/L)(I/L)PHQL and YSP(D/N)L(A/S)P. These two motifs differed from previously known motifs, WVPHEL and YSPDLAP. MLEs isolated from these three different species may have been inserted into their genomes by horizontal transfer. Furthermore, the presence of an intact ORF suggests that they are still active in habitats along these isolated islands.


Assuntos
Elementos de DNA Transponíveis/genética , Himenópteros/classificação , Himenópteros/genética , Lepidópteros/classificação , Lepidópteros/genética , Sequência de Aminoácidos , Animais , Evolução Molecular , Transferência Genética Horizontal , Genoma de Inseto , Proteínas de Insetos/genética , Japão , Filogenia , Alinhamento de Sequência , Transposases/genética
8.
Biol Lett ; 9(3): 20121153, 2013 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-23515978

RESUMO

In addition to harbouring intestinal symbionts, some animal species also possess intracellular symbiotic microbes. The relative contributions of gut-resident and intracellular symbionts to host metabolism, and how they coevolve are not well understood. Cockroaches and the termite Mastotermes darwiniensis present a unique opportunity to examine the evolution of spatially separated symbionts, as they harbour gut symbionts and the intracellular symbiont Blattabacterium cuenoti. The genomes of B. cuenoti from M. darwiniensis and the social wood-feeding cockroach Cryptocercus punctulatus are each missing most of the pathways for the synthesis of essential amino acids found in the genomes of relatives from non-wood-feeding hosts. Hypotheses to explain this pathway degradation include: (i) feeding on microbes present in rotting wood by ancestral hosts; (ii) the evolution of high-fidelity transfer of gut microbes via social behaviour. To test these hypotheses, we sequenced the B. cuenoti genome of a third wood-feeding species, the phylogenetically distant and non-social Panesthia angustipennis. We show that host wood-feeding does not necessarily lead to degradation of essential amino acid synthesis pathways in B. cuenoti, and argue that ancestral high-fidelity transfer of gut microbes best explains their loss in strains from M. darwiniensis and C. punctulatus.


Assuntos
Aminoácidos/biossíntese , Baratas/fisiologia , Simbiose , Animais , Baratas/genética , Baratas/metabolismo , Comportamento Alimentar , Genoma , Nitrogênio/metabolismo , Filogenia
9.
Insects ; 14(9)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37754736

RESUMO

Cockroaches of the subfamily Panesthiinae (family Blaberidae) are among the few major groups of insects feeding on decayed wood. Despite having independently evolved the ability to thrive on this recalcitrant and nitrogen-limited resource, they are among the least studied of all wood-feeding insect groups. In the pursuit of unraveling their unique digestive strategies, we explored cellulase and xylanase activity in the crop, midgut, and hindgut lumens of Panesthia angustipennis and Salganea taiwanensis. Employing Percoll density gradient centrifugation, we further fractionated luminal fluid to elucidate how the activities in the gut lumen are further partitioned. Our findings challenge conventional wisdom, underscoring the significant contribution of the hindgut, which accounts for approximately one-fifth of cellulase and xylanase activity. Particle-associated enzymes, potentially of bacterial origin, dominate hindgut digestion, akin to symbiotic strategies observed in select termites and passalid beetles. Our study sheds new light on the digestive prowess of panesthiine cockroaches, providing invaluable insights into the evolution of wood-feeding insects and their remarkable adaptability to challenging, nutrient-poor substrates.

10.
Appl Environ Microbiol ; 78(12): 4288-93, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22522682

RESUMO

Termites are well-known cellulose decomposers and can give researchers insights into how to utilize lignocellulosic biomass in the actual scenario of energy consumption. In this work, an endogenous ß-glucosidase from the midgut of the higher termite Nasutitermes takasagoensis was purified to homogeneity by Ni(2+) affinity chromatography and its properties were characterized. This ß-glucosidase (G1mgNtBG1), which belongs to glycoside hydrolase family 1, is a homotrimer in its native form, with a molecular mass of 169.5 kDa, as demonstrated by gel filtration chromatography. The enzyme displayed maximum activity at pH 5.5 and had broad substrate specificities toward several saccharides, including cellobiose. G1mgNtBG1 showed a relatively high temperature optimum of 65°C and one of the highest levels of glucose tolerance among several ß-glucosidases already characterized, with a K(i) of 600 mM glucose. To examine the applicability of G1mgNtBG1 in biomass conversion, we compared the thermostability and glucose tolerance of G1mgNtBG1 with those of Novozym 188. We found that G1mgNtBG1 was more thermostable after 5 h of incubation at 60°C and more resistant to glucose inhibition than Novozym 188. Furthermore, our result suggests that G1mgNtBG1 acts synergistically with Celluclast 1.5 L in releasing reducing sugars from Avicel. Thus, G1mgNtBG1 seems to be a potential candidate for use as a supplement in the hydrolysis of biomass.


Assuntos
Isópteros/enzimologia , Pichia/genética , beta-Glucosidase/genética , beta-Glucosidase/metabolismo , Animais , Cromatografia em Gel , Clonagem Molecular , Estabilidade Enzimática , Expressão Gênica , Concentração de Íons de Hidrogênio , Isópteros/genética , Cinética , Peso Molecular , Multimerização Proteica , Especificidade por Substrato , Temperatura , beta-Glucosidase/química
11.
Appl Environ Microbiol ; 78(1): 204-10, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22020505

RESUMO

Beneficial microbial associations with insects are common and are classified as either one or a few intracellular species that are vertically transmitted and reside intracellularly within specialized organs or as microbial assemblages in the gut. Cockroaches and termites maintain at least one if not both beneficial associations. Blattabacterium is a flavobacterial endosymbiont of nearly all cockroaches and the termite Mastotermes darwiniensis and can use nitrogenous wastes in essential amino acid and vitamin biosynthesis. Key changes during the evolutionary divergence of termites from cockroaches are loss of Blattabacterium, diet shift to wood, acquisition of a specialized hindgut microbiota, and establishment of advanced social behavior. Termite gut microbes collaborate to fix nitrogen, degrade lignocellulose, and produce nutrients, and the absence of Blattabacterium in nearly all termites suggests that its nutrient-provisioning role has been replaced by gut microbes. M. darwiniensis is a basal, extant termite that solely retains Blattabacterium, which would show evidence of relaxed selection if it is being supplanted by the gut microbiome. This termite-associated Blattabacterium genome is ∼8% smaller than cockroach-associated Blattabacterium genomes and lacks genes underlying vitamin and essential amino acid biosynthesis. Furthermore, the M. darwiniensis gut microbiome membership is more consistent between individuals and includes specialized termite gut-associated bacteria, unlike the more variable membership of cockroach gut microbiomes. The M. darwiniensis Blattabacterium genome may reflect relaxed selection for some of its encoded functions, and the loss of this endosymbiont in all remaining termite genera may result from its replacement by a functionally complementary gut microbiota.


Assuntos
Flavobacteriaceae/genética , Tamanho do Genoma , Genoma Bacteriano , Isópteros/microbiologia , Simbiose , Animais , Fenômenos Fisiológicos Bacterianos , Sequência de Bases , DNA Bacteriano/análise , Flavobacteriaceae/fisiologia , Metagenoma/genética , Dados de Sequência Molecular , Filogenia , Seleção Genética , Análise de Sequência de DNA
12.
Microbiol Spectr ; 10(5): e0277922, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36094208

RESUMO

Many insects harbor bacterial endosymbionts that supply essential nutrients and enable their hosts to thrive on a nutritionally unbalanced diet. Comparisons of the genomes of endosymbionts and their insect hosts have revealed multiple cases of mutually-dependent metabolic pathways that require enzymes encoded in 2 genomes. Complementation of metabolic reactions at the pathway level has been described for hosts feeding on unbalanced diets, such as plant sap. However, the level of collaboration between symbionts and hosts that feed on more variable diets is largely unknown. In this study, we investigated amino acid and vitamin/cofactor biosynthetic pathways in Blattodea, which comprises cockroaches and termites, and their obligate endosymbiont Blattabacterium cuenoti (hereafter Blattabacterium). In contrast to other obligate symbiotic systems, we found no clear evidence of "collaborative pathways" for amino acid biosynthesis in the genomes of these taxa, with the exception of collaborative arginine biosynthesis in 2 taxa, Cryptocercus punctulatus and Mastotermes darwiniensis. Nevertheless, we found that several gaps specific to Blattabacterium in the folate biosynthetic pathway are likely to be complemented by their host. Comparisons with other insects revealed that, with the exception of the arginine biosynthetic pathway, collaborative pathways for essential amino acids are only observed in phloem-sap feeders. These results suggest that the host diet is an important driving factor of metabolic pathway evolution in obligate symbiotic systems. IMPORTANCE The long-term coevolution between insects and their obligate endosymbionts is accompanied by increasing levels of genome integration, sometimes to the point that metabolic pathways require enzymes encoded in two genomes, which we refer to as "collaborative pathways". To date, collaborative pathways have only been reported from sap-feeding insects. Here, we examined metabolic interactions between cockroaches, a group of detritivorous insects, and their obligate endosymbiont, Blattabacterium, and only found evidence of collaborative pathways for arginine biosynthesis. The rarity of collaborative pathways in cockroaches and Blattabacterium contrasts with their prevalence in insect hosts feeding on phloem-sap. Our results suggest that host diet is a factor affecting metabolic integration in obligate symbiotic systems.


Assuntos
Baratas , Animais , Baratas/microbiologia , Genoma Bacteriano , Filogenia , Simbiose , Insetos , Bactérias/genética , Redes e Vias Metabólicas/genética , Aminoácidos , Aminoácidos Essenciais/genética , Arginina/genética , Ácido Fólico , Vitaminas
13.
Mycoscience ; 63(1): 33-38, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37091219

RESUMO

Fungi in the genus Termitomyces are external symbionts of fungus-growing termites. The three rhizogenic Termitomyces species T. eurrhizus, T. clypeatus, and T. intermedius, and one species similar to T. microcarpus that lacks pseudorrhiza, have been reported from Ryukyu Archipelago, Japan. In contrast, only two genetic groups (types A and B) of Termitomyces vegetative mycelia have been detected in nests of the fungus-growing termite Odontotermes formosanus. In this study, we investigated the relationships between the mycelial genetic groups and the basidiomata of Termitomyces samples from the Ryukyu Archipelago. We found that all the basidioma specimens and the type B mycelia formed one clade that we identified as T. intermedius. Another clade consisted of the type A mycelia, which showed similarity to T. microcarpus, was identified as T. fragilis. Our results indicate that the Japanese T. eurrhizus and T. clypeatus specimens should re-named as T. intermedius.

14.
Microbiome ; 10(1): 78, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35624491

RESUMO

BACKGROUND: Termites primarily feed on lignocellulose or soil in association with specific gut microbes. The functioning of the termite gut microbiota is partly understood in a handful of wood-feeding pest species but remains largely unknown in other taxa. We intend to fill this gap and provide a global understanding of the functional evolution of termite gut microbiota. RESULTS: We sequenced the gut metagenomes of 145 samples representative of the termite diversity. We show that the prokaryotic fraction of the gut microbiota of all termites possesses similar genes for carbohydrate and nitrogen metabolisms, in proportions varying with termite phylogenetic position and diet. The presence of a conserved set of gut prokaryotic genes implies that essential nutritional functions were present in the ancestor of modern termites. Furthermore, the abundance of these genes largely correlated with the host phylogeny. Finally, we found that the adaptation to a diet of soil by some termite lineages was accompanied by a change in the stoichiometry of genes involved in important nutritional functions rather than by the acquisition of new genes and pathways. CONCLUSIONS: Our results reveal that the composition and function of termite gut prokaryotic communities have been remarkably conserved since termites first appeared ~ 150 million years ago. Therefore, the "world's smallest bioreactor" has been operating as a multipartite symbiosis composed of termites, archaea, bacteria, and cellulolytic flagellates since its inception. Video Abstract.


Assuntos
Microbioma Gastrointestinal , Isópteros , Animais , Microbioma Gastrointestinal/genética , Metagenoma , Filogenia , Solo
15.
Appl Microbiol Biotechnol ; 89(6): 1761-71, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21057947

RESUMO

Neotermes koshunensis is a lower termite that secretes endogenous ß-glucosidase in the salivary glands. This ß-glucosidase (G1NkBG) was successfully expressed in Aspergillus oryzae. G1NkBG was purified to homogeneity from the culture supernatant through ammonium sulfate precipitation and anion exchange, hydrophobic, and gel filtration chromatographies with a 48-fold increase in purity. The molecular mass of the native enzyme appeared as a single band at 60 kDa after gel filtration analysis, indicating that G1NkBG is a monomeric protein. Maximum activity was observed at 50 °C with an optimum pH at 5.0. G1NkBG retained 80% of its maximum activity at temperatures up to 45 °C and lost its activity at temperatures above 55 °C. The enzyme was stable from pH 5.0 to 9.0. G1NkBG was most active towards laminaribiose and p-nitrophenyl-ß-D-fucopyranoside. Cellobiose, as well as cello-oligosaccharides, was also well hydrolyzed. The enzyme activity was slightly stimulated by Mn(2+) and glycerol. The K(m) and V(max) values were 0.77 mM and 16 U/mg, respectively, against p-nitrophenyl-ß-D-glucopyranoside. An unusual finding was that G1NkBG was stimulated by 1.3-fold when glucose was present in the reaction mixture at a concentration of 200 mM. These characteristics, particularly the stimulation of enzyme activity by glucose, make G1NkBG of great interest for biotechnological applications, especially for bioethanol production.


Assuntos
Aspergillus oryzae/genética , Isópteros/enzimologia , beta-Glucosidase/metabolismo , Animais , Aspergillus oryzae/metabolismo , Fracionamento Químico/métodos , Cromatografia Líquida/métodos , Ativadores de Enzimas/metabolismo , Estabilidade Enzimática , Expressão Gênica , Concentração de Íons de Hidrogênio , Isópteros/genética , Cinética , Peso Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Temperatura , beta-Glucosidase/química , beta-Glucosidase/genética
16.
Annu Rev Entomol ; 55: 609-32, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-19754245

RESUMO

Despite the presence of many carbohydrolytic activities in insects, their cellulolytic mechanisms are poorly understood. Whereas cellulase genes are absent from the genomes of Drosophila melanogaster or Bombyx mori, other insects such as termites produce their own cellulases. Recent studies using molecular biological techniques have brought new insights into the mechanisms by which the insects and their microbial symbionts digest cellulose in the small intestine. DNA sequences of cellulase and associated genes, as well as physiological and morphological information about the digestive systems of cellulase-producing insects, may allow the efficient use of cellulosic biomass as a sustainable energy source.


Assuntos
Celulases/metabolismo , Celulose/metabolismo , Isópteros/enzimologia , Animais , Evolução Biológica , Biomassa , Trato Gastrointestinal/anatomia & histologia , Isópteros/anatomia & histologia , Isópteros/genética , Simbiose
17.
Biosci Biotechnol Biochem ; 74(8): 1680-6, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20699551

RESUMO

Although termites are known to have a highly efficient lignocellulose-digesting system, mass production of native endogenous cellulases of termites has failed in Escherchia coli, and in Saccharomyces cerevisiae, and it has not been accomplished. Here we report the successful production, purification, and characterization of two termite endogenous beta-1,4-endoglucanases, RsEG and NtEG, from the salivary gland of Reticulitermes speratus and the midgut of Nasutitermes takasagoensis respectively, using Aspergillus oryzae as host. Thin-layer chromatography analysis showed that both enzymes hydrolyzed the beta-1,4-cellulosic linkage of cellodextrin into cellobiose and glucose. Kinetic studies indicated that the specific activity and Vmax values of the two enzymes were significantly higher than those of previously reported fungal and bacterial endoglucanases.


Assuntos
Aspergillus oryzae/genética , Celulase/biossíntese , Celulase/isolamento & purificação , Isópteros/enzimologia , Engenharia de Proteínas/métodos , Animais , Celulase/genética , Celulase/metabolismo , Celulose/metabolismo , Clonagem Molecular , Meios de Cultivo Condicionados , DNA Complementar/genética , Isópteros/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
18.
Curr Biol ; 30(19): 3848-3855.e4, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32763167

RESUMO

The evolutionary processes that drive variation in genome size across the tree of life remain unresolved. Effective population size (Ne) is thought to play an important role in shaping genome size [1-3]-a key example being the reduced genomes of insect endosymbionts, which undergo population bottlenecks during transmission [4]. However, the existence of reduced genomes in marine and terrestrial prokaryote species with large Ne indicate that genome reduction is influenced by multiple processes [3]. One candidate process is enhanced mutation rate, which can increase adaptive capacity but can also promote gene loss. To investigate evolutionary forces associated with prokaryotic genome reduction, we performed molecular evolutionary and phylogenomic analyses of nine lineages from five bacterial and archaeal phyla. We found that gene-loss rate strongly correlated with synonymous substitution rate (a proxy for mutation rate) in seven of the nine lineages. However, gene-loss rate showed weak or no correlation with the ratio of nonsynonymous/synonymous substitution rate (dN/dS). These results indicate that genome reduction is largely associated with increased mutation rate, while the association between gene loss and changes in Ne is less well defined. Lineages with relatively high dS and dN, as well as smaller genomes, lacked multiple DNA repair genes, providing a proximate cause for increased mutation rates. Our findings suggest that similar mechanisms drive genome reduction in both intracellular and free-living prokaryotes, with implications for developing a comprehensive theory of prokaryote genome size evolution.


Assuntos
Archaea/genética , Bactérias/genética , Instabilidade Genômica/genética , Evolução Molecular , Deriva Genética , Variação Genética/genética , Genoma/genética , Genoma Bacteriano/genética , Mutação , Taxa de Mutação , Filogenia , Densidade Demográfica , Células Procarióticas/metabolismo , Seleção Genética/genética
19.
Biosci Biotechnol Biochem ; 73(3): 710-8, 2009 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-19270398

RESUMO

Coptotermes formosanus is one of the most destructive termites in the southern part of Japan as well as in the United States. Hemicellulose is a noncellulosic polysaccharide found in plant cell walls, and xylan is the major constituent of hemicellulose. Since hemicellulose prevents access of cellulolytic enzymes to cellulose, enzymatic hydrolysis of hemicellulose is beneficial for cellulose digestion. We purified three functional xylanases to homogeneity from C. formosanus for the first time. Elution profiles from the whole termite extract suggest that these three xylanases play major roles in xylan digestion in the gut of the termites. The corresponding cDNAs were successfully cloned based on the N-terminal amino acid sequences, encoding GHF11 xylanases. Reverse transcription-PCR using manipulated protozoan cells in the hindgut revealed that the corresponding genes were expressed in the symbiotic flagellate Holomastigotoides mirabile. These results suggest that the GHF11 xylanases that are produced by the symbiotic flagellates play a primary role in xylan degradation in C. formosanus.


Assuntos
Isópteros/enzimologia , Xilosidases/genética , Xilosidases/isolamento & purificação , Sequência de Aminoácidos , Animais , Sequência de Bases , Cromatografia , Clonagem Molecular , DNA Complementar/genética , Trato Gastrointestinal/enzimologia , Isópteros/genética , Isópteros/fisiologia , Dados de Sequência Molecular , Técnicas de Amplificação de Ácido Nucleico , Simbiose , Xilosidases/química , Xilosidases/metabolismo
20.
Carbohydr Res ; 474: 1-7, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30665024

RESUMO

Symbionts in the gut of termites are expected to be large sources of enzymes involved in lignocellulose degradation, but their biotechnological potential has not been fully explored. In this study, we expressed, purified, and biochemically characterized a glycoside hydrolase family 11 xylanase, NtSymX11, from a symbiotic bacterium of the higher termite, Nasutitermes takasagoensis. NtSymX11 is a multimodular enzyme consisting of a catalytic domain and two tandem carbohydrate-binding modules (CBM36). The pH and temperature optima of NtSymX11 were pH 6.0 and 40 °C, respectively. By comparing the properties of full-length and truncated variants of NtSymX11, it was shown that CBM36 decreases the enzyme stability at acidic pH and high temperature. The main products from xylohexaose and various xylan substrates were X1-X3 xylooligosaccharides. Analysis of kinetic parameters indicated that NtSymX11 displays an outstanding catalytic performance when compared to other reported xylanases, and CBM36 enhances the activity by increasing the affinity to the substrate. Addition of Ca2+ boosted the activity of full-length enzyme, but not the truncated variant lacking the CBM, against the insoluble substrate, suggesting that CBM36 plays a role in the Ca2+-dependent increase of catalytic efficiency.


Assuntos
Bactérias/química , Proteínas de Bactérias/metabolismo , Endo-1,4-beta-Xilanases/metabolismo , Glucuronatos/metabolismo , Isópteros/microbiologia , Oligossacarídeos/metabolismo , Xilanos/metabolismo , Sequência de Aminoácidos , Animais , Bactérias/enzimologia , Bactérias/genética , Proteínas de Bactérias/genética , Cálcio/química , Clonagem Molecular , Endo-1,4-beta-Xilanases/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Glucuronatos/química , Concentração de Íons de Hidrogênio , Intestinos/microbiologia , Cinética , Metagenoma , Oligossacarídeos/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Simbiose/fisiologia , Temperatura , Xilanos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA