Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.007
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 564(7734): 95-98, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30518889

RESUMO

Crystal lattices with tetragonal or hexagonal structure often exhibit structural transitions in response to external stimuli1. Similar behaviour is anticipated for the lattice forms of topological spin textures, such as lattices composed of merons and antimerons or skyrmions and antiskyrmions (types of vortex related to the distribution of electron spins in a magnetic field), but has yet to be verified experimentally2,3. Here we report real-space observations of spin textures in a thin plate of the chiral-lattice magnet Co8Zn9Mn3, which exhibits in-plane magnetic anisotropy. The observations demonstrate the emergence of a two-dimensional square lattice of merons and antimerons from a helical state, and its transformation into a hexagonal lattice of skyrmions in the presence of a magnetic field at room temperature. Sequential observations with decreasing temperature reveal that the topologically protected skyrmions remain robust to changes in temperature, whereas the square lattice of merons and antimerons relaxes to non-topological in-plane spin helices, highlighting the different topological stabilities of merons, antimerons and skyrmions. Our results demonstrate the rich variety of topological spin textures and their lattice forms, and should stimulate further investigation of emergent electromagnetic properties.

2.
Proc Natl Acad Sci U S A ; 118(8)2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33608462

RESUMO

Nonreciprocity emerges in nature and in artificial objects from various physical origins, being widely utilized in contemporary technologies as exemplified by diode elements in electronics. While most of the nonreciprocal phenomena are realized by employing interfaces where the inversion symmetry is trivially lifted, nonreciprocal transport of photons, electrons, magnons, and possibly phonons also emerge in bulk crystals with broken space inversion and time reversal symmetries. Among them, directional propagation of bulk magnons (i.e., quanta of spin wave excitation) is attracting much attention nowadays for its potentially large nonreciprocity suitable for spintronic and spin-caloritronic applications. Here, we demonstrate nonreciprocal propagation of spin waves for the conical spin helix state in Cu2OSeO3 due to a combination of dipole and Dzyaloshinskii-Moriya interactions. The observed nonreciprocal spin dispersion smoothly connects to the hitherto known magnetochiral nonreciprocity in the field-induced collinear spin state; thus, all the spin phases show diode characteristics in this chiral insulator.

3.
Nat Mater ; 21(2): 181-187, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34764432

RESUMO

Magnetic skyrmions are topologically stable swirling spin textures that appear as particle-like objects in two-dimensional (2D) systems. Here, utilizing scalar magnetic X-ray tomography under applied magnetic fields, we report the direct visualization of the three-dimensional (3D) shape of individual skyrmion strings in the room-temperature skyrmion-hosting non-centrosymmetric compound Mn1.4Pt0.9Pd0.1Sn. Through the tomographic reconstruction of the 3D distribution of the [001] magnetization component on the basis of transmission images taken at various angles, we identify a skyrmion string running through the entire thickness of the sample, as well as various defect structures, such as the interrupted and Y-shaped strings. The observed point defect may represent the Bloch point serving as an emergent magnetic monopole, as proposed theoretically. Our tomographic approach with a tunable magnetic field paves the way for direct visualization of the structural dynamics of individual skyrmion strings in 3D space, which will contribute to a better understanding of the creation, annihilation and transfer of these topological objects.

4.
Phys Rev Lett ; 130(17): 176301, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37172228

RESUMO

The phonon magnetochiral effect (MChE) is the nonreciprocal acoustic and thermal transports of phonons caused by the simultaneous breaking of the mirror and time-reversal symmetries. So far, the phonon MChE has been observed only in a ferrimagnetic insulator Cu_{2}OSeO_{3}, where the nonreciprocal response disappears above the Curie temperature of 58 K. Here, we study the nonreciprocal acoustic properties of a room-temperature ferromagnet Co_{9}Zn_{9}Mn_{2} for unveiling the phonon MChE close to room temperature. Surprisingly, the nonreciprocity in this metallic compound is enhanced at higher temperatures and observed up to 250 K. This clear contrast between insulating Cu_{2}OSeO_{3} and metallic Co_{9}Zn_{9}Mn_{2} suggests that metallic magnets have a mechanism to enhance the nonreciprocity at higher temperatures. From the ultrasound and microwave-spectroscopy experiments, we conclude that the magnitude of the phonon MChE of Co_{9}Zn_{9}Mn_{2} mostly depends on the Gilbert damping, which increases at low temperatures and hinders the magnon-phonon hybridization. Our results suggest that the phonon nonreciprocity could be further enhanced by engineering the magnon band of materials.

5.
Proc Natl Acad Sci U S A ; 116(6): 1929-1933, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30670652

RESUMO

Photoexcitation in solids brings about transitions of electrons/holes between different electronic bands. If the solid lacks an inversion symmetry, these electronic transitions support spontaneous photocurrent due to the geometric phase of the constituting electronic bands: the Berry connection. This photocurrent, termed shift current, is expected to emerge on the timescale of primary photoexcitation process. We observe ultrafast evolution of the shift current in a prototypical ferroelectric semiconductor antimony sulfur iodide (SbSI) by detecting emitted terahertz electromagnetic waves. By sweeping the excitation photon energy across the bandgap, ultrafast electron dynamics as a source of terahertz emission abruptly changes its nature, reflecting a contribution of Berry connection on interband optical transition. The shift excitation carries a net charge flow and is followed by a swing over of the electron cloud on a subpicosecond timescale. Understanding these substantive characters of the shift current with the help of first-principles calculation will pave the way for its application to ultrafast sensors and solar cells.

6.
Phys Rev Lett ; 127(14): 145701, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34652188

RESUMO

We report complex behaviors in the phase evolution of transition-metal dichalcogenide IrTe_{2} thin flakes, captured with real-space observations using scanning Raman microscopy. The phase transition progresses via growth of a small number of domains, which is unlikely in statistical models that assume a macroscopic number of nucleation events. Consequently, the degree of phase evolution in the thin flakes is quite variable for the selected specimen and for a repeated measurement sequence, representing the emergence of complexity in the phase evolution. In the ∼20-µm^{3}-volume specimen, the complex phase evolution results in the emergent coexistence of a superconducting phase that originally requires chemical doping to become thermodynamically stable. These findings indicate that the complexity involved in phase evolution considerably affects the physical properties of a small-sized specimen.

7.
Phys Rev Lett ; 127(15): 157201, 2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34678006

RESUMO

Nonreciprocal directional dichroism, also called the optical-diode effect, is an appealing functional property inherent to the large class of noncentrosymmetric magnets. However, the in situ electric control of this phenomenon is challenging as it requires a set of conditions to be fulfilled: Special symmetries of the magnetic ground state, spin excitations with comparable magnetic- and electric-dipole activity, and switchable electric polarization. We demonstrate the isothermal electric switch between domains of Ba_{2}CoGe_{2}O_{7} possessing opposite magnetoelectric susceptibilities. Combining THz spectroscopy and multiboson spin-wave analysis, we show that unbalancing the population of antiferromagnetic domains generates the nonreciprocal light absorption of spin excitations.

8.
Regul Toxicol Pharmacol ; 125: 105026, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34389358

RESUMO

Next generation risk assessment (NGRA) is an exposure-led, hypothesis-driven approach that has the potential to support animal-free safety decision-making. However, significant effort is needed to develop and test the in vitro and in silico (computational) approaches that underpin NGRA to enable confident application in a regulatory context. A workshop was held in Montreal in 2019 to discuss where effort needs to be focussed and to agree on the steps needed to ensure safety decisions made on cosmetic ingredients are robust and protective. Workshop participants explored whether NGRA for cosmetic ingredients can be protective of human health, and reviewed examples of NGRA for cosmetic ingredients. From the limited examples available, it is clear that NGRA is still in its infancy, and further case studies are needed to determine whether safety decisions are sufficiently protective and not overly conservative. Seven areas were identified to help progress application of NGRA, including further investments in case studies that elaborate on scenarios frequently encountered by industry and regulators, including those where a 'high risk' conclusion would be expected. These will provide confidence that the tools and approaches can reliably discern differing levels of risk. Furthermore, frameworks to guide performance and reporting should be developed.


Assuntos
Alternativas aos Testes com Animais/métodos , Qualidade de Produtos para o Consumidor/normas , Cosméticos/normas , Medição de Risco
9.
Nano Lett ; 20(10): 7476-7481, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32897724

RESUMO

Magnetic Weyl semimetals attract considerable interest not only for their topological quantum phenomena but also as an emerging materials class for realizing quantum anomalous Hall effect in the two-dimensional limit. A shandite compound Co3Sn2S2 with layered kagome-lattices is one such material, where vigorous efforts have been devoted to synthesize the two-dimensional crystal. Here, we report a synthesis of Co3Sn2S2 thin flakes with a thickness of 250 nm by chemical vapor transport method. We find that this facile bottom-up approach allows the formation of large-sized Co3Sn2S2 thin flakes of high-quality, where we identify the largest electron mobility (∼2600 cm2 V-1 s-1) among magnetic topological semimetals, as well as the large anomalous Hall conductivity (∼1400 Ω-1 cm-1) and anomalous Hall angle (∼32%) arising from the Berry curvature. Our study provides a viable platform for studying high-quality thin flakes of magnetic Weyl semimetal and stimulate further research on unexplored topological phenomena in the two-dimensional limit.

10.
Phys Rev Lett ; 124(4): 047002, 2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32058775

RESUMO

GeTe is a chemically simple IV-VI semiconductor which bears a rich plethora of different physical properties induced by doping and external stimuli. Here, we report a superconductor-semiconductor-superconductor transition controlled by finely-tuned In doping. Our results reveal the existence of a critical doping concentration x_{c}=0.12 in Ge_{1-x}In_{x}Te, where various properties, including structure, resistivity, charge carrier type, and the density of states, take either an extremum or change their character. At the same time, we find indications of a change in the In-valence state from In^{3+} to In^{1+} with increasing x by core-level photoemission spectroscopy, suggesting that this system is a new promising playground to probe valence fluctuations and their possible impact on structural, electronic, and thermodynamic properties of their host.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA