RESUMO
The emergence of the coronavirus pandemic facilitated the acquisition of mutations in the SARS-CoV-2 genome, resulting in the appearance of new variants over the past three years. We previously identified several taxa associated with the clinical outcome of COVID-19 disease in a retrospective study involving 120 patients (infected patients and negative subjects). However, little is known about whether the different variants could influence variations in the composition of the nasopharyngeal microbiota. In this study, we used multiplex pathogen-specific PCR to analyse the presence of nasopharyngeal bacterial pathogens from 400 SARS-CoV-2 positive patients (equally distributed in the four SARS-CoV-2 variants studied: B.1.1.7 (Alpha), B.1 0.617.2 (Delta), B.1.160 (Marseille-4), and B.1.1.529 (omicron)). We then compared them to 400 patients who tested negative for all respiratory viruses tested in this study, including SARS-CoV-2. We first observed an enrichment of Staphylococcus aureus (P ≤ .05) and Corynebacterium propinquum (P ≤ .05) in COVID-19-positive patients, regardless of the variant, compared to negative subjects. We specifically highlighted a significantly higher frequency of S. aureus (P ≤ .0001), C. propinquum (P ≤ .0001), and Klebsiella pneumoniae (P ≤ .0001), in patients infected with the omicron variant, whereas that of Haemophilus influenzae was higher in patients infected with Marseille-4 (P ≤ .001) and Alpha (P ≤ .01) variants. Our results suggest that the nasopharyngeal bacterial pathogens have their own specificity according to the SARS-CoV-2 variant and independently of the season. Additional studies are needed to determine the role of these pathogens in the evolution of the clinical outcome of patients.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Estudos Retrospectivos , Staphylococcus aureusRESUMO
The nature and dynamics of mutations associated with the emergence, spread, and vanishing of SARS-CoV-2 variants causing successive waves are complex. We determined the kinetics of the most common French variant ("Marseille-4") for 10 months since its onset in July 2020. Here, we analyzed and classified into subvariants and lineages 7453 genomes obtained by next-generation sequencing. We identified two subvariants, Marseille-4A, which contains 22 different lineages of at least 50 genomes, and Marseille-4B. Their average lifetime was 4.1 ± 1.4 months, during which 4.1 ± 2.6 mutations accumulated. Growth rate was 0.079 ± 0.045, varying from 0.010 to 0.173. Most of the lineages exhibited a bell-shaped distribution. Several beneficial mutations at unpredicted sites initiated a new outbreak, while the accumulation of other mutations resulted in more viral heterogenicity, increased diversity and vanishing of the lineages. Marseille-4B emerged when the other Marseille-4 lineages vanished. Its ORF8 gene was knocked out by a stop codon, as reported in SARS-CoV-2 of mink and in the Alpha variant. This subvariant was associated with increased hospitalization and death rates, suggesting that ORF8 is a nonvirulence gene. We speculate that the observed heterogenicity of a lineage may predict the end of the outbreak.
Assuntos
COVID-19 , Epidemias , Vírus de RNA , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , FilogeniaRESUMO
The emergence of the Coronavirus Disease 2019 (COVID-19) pandemic has fostered the use of high-throughput techniques to sequence the entire severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome and track its evolution. The present study proposes a rapid and relatively less expensive sequencing protocol for 384 samples by adapting the use of an Illumina NovaSeq library to an Illumina MiSeq flow cell instrument. The SARS-CoV-2 genome sequences obtained with Illumina NovaSeq and those obtained using MiSeq instruments were compared with the objective to validate the new, modified protocol. A total of 356 (94.6%) samples yielded interpretable sequences using the modified Illumina COVIDSeq protocol, with an average coverage of 91.6%. By comparison, 357 (94.9%) samples yielded interpretable sequences with the standard COVIDSeq protocol, with an average coverage of 95.6%. Our modified COVIDSeq protocol could save 14,155 euros per run and yield results from 384 samples in 53.5 h, compared to four times 55.5 h with the standard Illumina MiSeq protocol. The modified COVIDSeq protocol thus provides high quality results comparable to those obtained with the standard COVIDSeq protocol, four times faster, while saving money.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/genética , Sequenciamento Completo do Genoma/métodos , Biblioteca Gênica , Genoma ViralRESUMO
In the present study, we propose a high-throughput sequencing protocol using aNextera XT Library DNA kit on an Illumina MiSeq instrument. We made major modifications to this library preparation in order to multiplex 384 samples in a single Illumina flow cell. To validate our protocol, we compared the sequences obtained with the modified Illumina protocol to those obtained with the GridION Nanopore protocol. For the modified Illumina protocol, our results showed that 94.9% (357/376) of the sequences were interpretable, with a viral genome coverage between 50.5% and 99.9% and an average depth of 421×. For the GridION Nanopore protocol, 94.6% (356/376) of the sequences were interpretable, with a viral genome coverage between 7.0% and 98.6% and an average depth of 2123×. The modified Illumina protocol allows for gaining EUR 4744 and returning results of 384 samples in 53.5 h versus four times 55.5 h with the standard Illumina protocol. Our modified MiSeq protocol yields similar genome sequence data as the GridION Nanopore protocol and has the advantage of being able to handle four times more samples simultaneously and hence is much less expensive.