Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Int J Mol Sci ; 22(13)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201758

RESUMO

Neutrophils-once considered as simple killers of pathogens and unexciting for cancer research-are now acknowledged for their role in the process of tumorigenesis. Neutrophils are recruited to the tumor microenvironment where they turn into tumor-associated neutrophils (TANs), and are able to initiate and promote tumor progression and metastasis. Conversely, anti-tumorigenic properties of neutrophils have been documented, highlighting the versatile nature and high pleiotropic plasticity of these polymorphonuclear leukocytes (PMN-L). Here, we dissect the ambivalent roles of TANs in cancer and focus on selected functional aspects that could be therapeutic targets. Indeed, the critical point of targeting TAN functions lies in the fact that an immunosuppressive state could be induced, resulting in unwanted side effects. A deeper knowledge of the mechanisms linked to diverse TAN functions in different cancer types is necessary to define appropriate therapeutic strategies that are able to induce and maintain an anti-tumor microenvironment.


Assuntos
Carcinogênese/patologia , Terapia de Alvo Molecular/métodos , Neoplasias/patologia , Neutrófilos/patologia , Microambiente Tumoral/imunologia , Animais , Carcinogênese/imunologia , Humanos , Neoplasias/imunologia , Neoplasias/terapia , Neutrófilos/imunologia
2.
Int J Mol Sci ; 22(16)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34445548

RESUMO

S100A9, a Ca2+-binding protein, is tightly associated to neutrophil pro-inflammatory functions when forming a heterodimer with its S100A8 partner. Upon secretion into the extracellular environment, these proteins behave like damage-associated molecular pattern molecules, which actively participate in the amplification of the inflammation process by recruitment and activation of pro-inflammatory cells. Intracellular functions have also been attributed to the S100A8/A9 complex, notably its ability to regulate nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation. However, the complete functional spectrum of S100A8/A9 at the intracellular level is far from being understood. In this context, we here investigated the possibility that the absence of intracellular S100A8/A9 is involved in cytokine secretion. To overcome the difficulty of genetically modifying neutrophils, we used murine neutrophils derived from wild-type and S100A9-/- Hoxb8 immortalized myeloid progenitors. After confirming that differentiated Hoxb8 neutrophil-like cells are a suitable model to study neutrophil functions, our data show that absence of S100A8/A9 led to a dysregulation of cytokine secretion after lipopolysaccharide (LPS) stimulation. Furthermore, we demonstrate that S100A8/A9-induced cytokine secretion was regulated by the nuclear factor kappa B (NF-κB) pathway. These results were confirmed in human differentiated HL-60 cells, in which S100A9 was inhibited by shRNAs. Finally, our results indicate that the degranulation process could be involved in the regulation of cytokine secretion by S100A8/A9.


Assuntos
Calgranulina A/metabolismo , Calgranulina B/metabolismo , Citocinas/metabolismo , Proteínas de Homeodomínio/metabolismo , Neutrófilos/imunologia , Células-Tronco/imunologia , Animais , Calgranulina A/genética , Calgranulina B/genética , Estrogênios/farmacologia , Células HL-60 , Proteínas de Homeodomínio/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas de Neoplasias , Neutrófilos/citologia , Neutrófilos/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo
3.
Int J Mol Sci ; 20(22)2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31739406

RESUMO

The release of cytokines by neutrophils constitutes an essential process in the development of inflammation by recruiting and activating additional cells. Neutrophils are also able to secrete a complex of S100A8 and S100A9 proteins (S100A8/A9), which can amplify the general inflammatory state of the host and is involved in the pathogenesis of several chronic inflammatory diseases, such as rheumatoid arthritis (RA). S100A8/A9 have received renewed attention due to their susceptibility to several function-altering post-translational modifications. In that context, it has been recently demonstrated that only the phosphorylated form of S100A8/A9 (S100A8/A9-P) is able to induce the secretion of several cytokines in neutrophils. Here, we investigate the mechanism by which this post-translational modification of S100A8/A9 can regulate the extracellular activity of the protein complex and its impact on the inflammatory functions of neutrophils. We found that S100A8/A9-P are present in large amounts in the synovial fluids from RA patients, highlighting the importance of this form of S100A8/A9 complex in the inflammation process. Using miRNA-sequencing on S100A8/A9-P-stimulated differentiated HL-60 cells, we identified a dysregulation of miR-146a-5p and miR-155-5p expression through TRL4 signaling pathways. Our data reveal that overexpression of these miRNAs in neutrophil-like cells reduces S100A8/A9-P-mediated secretion of pro-inflammatory cytokines.


Assuntos
Calgranulina A/metabolismo , Calgranulina B/metabolismo , Citocinas/metabolismo , MicroRNAs/genética , Neutrófilos/imunologia , Neutrófilos/metabolismo , Artrite Reumatoide/etiologia , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Humanos , Fosforilação , Transdução de Sinais , Líquido Sinovial/metabolismo
4.
Front Immunol ; 14: 1274378, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38292491

RESUMO

Background: Neutrophils are an important source of pro-inflammatory and immunomodulatory cytokines. This makes neutrophils efficient drivers of interactions with immune and non-immune cells to maintain homeostasis and modulate the inflammatory process by notably regulating the release of cytokines. Ca2+-dependent regulatory mechanism encompassing cytokine secretion by neutrophils are not still identified. In this context, we propose to define new insights on the role of Ca2+-binding proteins S100A8/A9 and on the regulatory role of miRNA-132-5p, which was identified as a regulator of S100A8/A9 expression, on IL-8 secretion. Methods: Differentiated HL-60 cells, a human promyelocytic leukemia cell line that can be induced to differentiate into neutrophil-like cells, were used as a model of human neutrophils and treated with N- formyl-methionyl-leucyl-phenylalanine (fMLF), a bacterial peptide that activates neutrophils. shRNA knockdown was used to define the role of selected targets (S100A8/A9 and miRNA-132-5p) on IL-8 secretion. Results and discussion: Different types of cytokines engage different signaling pathways in the secretion process. IL-8 release is tightly regulated by Ca2+ binding proteins S100A8/A9. miRNA-132-5p is up-regulated over time upon fMLF stimulation and decreases S100A8/A9 expression and IL-8 secretion. Conclusion: These findings reveal a novel regulatory loop involving S100A8/A9 and miRNA-132-5p that modulates IL-8 secretion by neutrophils in inflammatory conditions. This loop could be a potential target for therapeutic intervention in inflammatory diseases.


Assuntos
MicroRNAs , Neutrófilos , Humanos , Calgranulina B/genética , Calgranulina B/metabolismo , Interleucina-8/metabolismo , Regulação para Baixo , Retroalimentação , Células HL-60 , Calgranulina A/genética , Calgranulina A/metabolismo , Citocinas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo
5.
Cancer Gene Ther ; 30(10): 1330-1345, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37420093

RESUMO

Therapy Induced Senescence (TIS) leads to sustained growth arrest of cancer cells. The associated cytostasis has been shown to be reversible and cells escaping senescence further enhance the aggressiveness of cancers. Chemicals specifically targeting senescent cells, so-called senolytics, constitute a promising avenue for improved cancer treatment in combination with targeted therapies. Understanding how cancer cells evade senescence is needed to optimise the clinical benefits of this therapeutic approach. Here we characterised the response of three different NRAS mutant melanoma cell lines to a combination of CDK4/6 and MEK inhibitors over 33 days. Transcriptomic data show that all cell lines trigger a senescence programme coupled with strong induction of interferons. Kinome profiling revealed the activation of Receptor Tyrosine Kinases (RTKs) and enriched downstream signaling of neurotrophin, ErbB and insulin pathways. Characterisation of the miRNA interactome associates miR-211-5p with resistant phenotypes. Finally, iCell-based integration of bulk and single-cell RNA-seq data identifies biological processes perturbed during senescence and predicts 90 new genes involved in its escape. Overall, our data associate insulin signaling with persistence of a senescent phenotype and suggest a new role for interferon gamma in senescence escape through the induction of EMT and the activation of ERK5 signaling.


Assuntos
Insulinas , Melanoma , Humanos , Multiômica , Linhagem Celular Tumoral , Melanoma/tratamento farmacológico , Melanoma/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Insulinas/uso terapêutico , Senescência Celular/genética , Proteínas de Membrana/genética , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/uso terapêutico
6.
Brain Res ; 1210: 103-15, 2008 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-18423580

RESUMO

GEC1 protein shares high identity with GABARAP (GABA(A) Receptor-Associated Protein), interacts with tubulin and GABA(A) receptors and is potentially involved in intracellular transport processes. Recently, using quantitative real time PCR, we have reported the gec1 mRNA expression in different rat brain areas. In the present study, we investigated the cell types expressing gec1 in rat brain. Sense and anti-sense gec1 RNA probes, corresponding to the 3'-untranslated region, were generated. In northern blotting experiments, the anti-sense probe revealed only the 1.75 kb gec1 mRNAs. On the other hand, in immunohistochemistry experiments, GEC1 polyclonal antibodies did not discriminate between GEC1 and GABARAP proteins. Therefore, we used digoxigenin-labeled RNA probes for in situ hybridization (ISH) experiments to map the gec1 expression. Using the anti-sense probe, we detected the gec1 mRNAs specifically in neurons throughout the rostrocaudal extent of the brain as well as in the spinal cord. Although a majority of neurons expressed the gec1 mRNAs, different intensities of labeling were observed depending on the areas: the strongest labeling was observed in the isocortex, hippocampus, basal telencephalon, some thalamic and most of hypothalamic nuclei, cerebellum, and numerous brainstem nuclei. Furthermore, the gec1 mRNAs were intensely expressed in neurons involved in somatomotor and neuroendocrine functions and weakly expressed in sensory and reticular structures. These results corroborate the putative role of the GEC1 protein in the trafficking of receptor GABA(A).


Assuntos
Encéfalo/metabolismo , Proteínas de Transporte/genética , Proteínas Associadas aos Microtúbulos/genética , RNA Mensageiro/metabolismo , Receptores de GABA-A/metabolismo , Medula Espinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Elementos Antissenso (Genética) , Encéfalo/anatomia & histologia , Mapeamento Encefálico , Proteínas de Transporte/biossíntese , Hibridização In Situ , Masculino , Proteínas Associadas aos Microtúbulos/biossíntese , Vias Neurais/anatomia & histologia , Vias Neurais/metabolismo , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Medula Espinal/anatomia & histologia
7.
Front Immunol ; 9: 447, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29593718

RESUMO

S100A8 and S100A9 are members of the S100 family of cytoplasmic EF-hand Ca2+-binding proteins and are abundantly expressed in the cytosol of neutrophils. In addition to their intracellular roles, S100A8/A9 can be secreted in the extracellular environment and are considered as alarmins able to amplify the inflammatory response. The intracellular activity of S100A8/A9 was shown to be regulated by S100A9 phosphorylation, but the importance of this phosphorylation on the extracellular activity of S100A8/A9 has not yet been extensively studied. Our work focuses on the impact of the phosphorylation state of secreted S100A9 on the proinflammatory function of neutrophils. In a first step, we characterized the secretion of S100A8/A9 in different stimulatory conditions and investigated the phosphorylation state of secreted S100A9. Our results on neutrophil-like differentiated HL-60 (dHL-60) cells and purified human neutrophils showed a time-dependent secretion of S100A8/A9 when induced by phorbol 12-myristoyl 13-acetate and this secreted S100A9 was found in a phosphorylated form. Second, we evaluated the impact of this phosphorylation on proinflammatory cytokine expression and secretion in dHL-60 cells. Time course experiments with purified unphosphorylated or phosphorylated S100A8/A9 were performed and the expression and secretion levels of interleukin (IL)-1α, IL-1ß, IL-6, tumor necrosis factor alpha, CCL2, CCL3, CCL4, and CXCL8 were measured by real-time PCR and cytometry bead array, respectively. Our results demonstrate that only the phosphorylated form of the complex induces proinflammatory cytokine expression and secretion. For the first time, we provide evidence that S100A8/PhosphoS100A9 is inducing cytokine secretion through toll-like receptor 4 signaling.


Assuntos
Calgranulina A/metabolismo , Calgranulina B/metabolismo , Espaço Extracelular/metabolismo , Neutrófilos/fisiologia , Receptor 4 Toll-Like/metabolismo , Alarminas/metabolismo , Secreções Corporais , Citocinas/metabolismo , Células HL-60 , Humanos , Mediadores da Inflamação/metabolismo , Ativação de Neutrófilo , Fosforilação , Transdução de Sinais
8.
Biochim Biophys Acta ; 1731(1): 23-31, 2005 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-16153720

RESUMO

The gec1/GABARAPL1 (GABA(A)-receptor-associated protein like-1) gene has been identified as an early estrogen-regulated gene in guinea-pig cultured endometrial glandular epithelial cells (GEC). Guinea-pig and human gec1/GABARAPL1 proteins share 87% identity with GABARAP, which acts as a protein linker between microtubules and the GABA(A) receptor. To investigate the molecular mechanisms regulating gec1/GABARAPL1 gene expression, the 1.5-kbp region upstream of the translation initiation codon of the guinea-pig gec1/GABARAPL1 gene was cloned. A 300-bp fragment encompassing a pyrimidine-rich initiator element (INR) and the transcription start site (+1) was sufficient to initiate transcription. Transfection and gel shift experiments showed that a sequence located at +36/+50 in the first exon permitted induction of expression of this gene by estradiol acting via ERalpha. This sequence (GGGTCAACGTGACGT) differs only by one base pair from the consensus estrogen response element ERE (GGGTCAACGTGACCT). It can be concluded that the ERE located in the first exon encoding the 5'-untranslated region is sufficient for E2 activation of gec1/GABARAPL1 transcription.


Assuntos
Estrogênios/farmacologia , Proteínas Associadas aos Microtúbulos/genética , Regiões Promotoras Genéticas/genética , Elementos de Resposta/genética , Proteínas Adaptadoras de Transdução de Sinal , Animais , Sequência de Bases , Células CHO , Cricetinae , Estradiol/farmacologia , Receptor alfa de Estrogênio/biossíntese , Receptor alfa de Estrogênio/metabolismo , Éxons , Feminino , Regulação da Expressão Gênica , Cobaias , Proteínas Associadas aos Microtúbulos/biossíntese , Dados de Sequência Molecular , Sítio de Iniciação de Transcrição
9.
Brain Res ; 1073-1074: 83-7, 2006 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-16458273

RESUMO

GABARAP and GEC1/GABARAPL1 interact with tubulin and GABA(A) receptor and belong to a new protein family. This family includes GATE 16 and LC3, potentially involved in intracellular transport processes. In this study, we combined brain dissection and quantitative real-time reverse transcription polymerase chain reaction to study discriminatively gabarap, gec1/gabarapL1, gate16/gabarapL2, lc3 mRNA distribution in multiple rat brain areas.


Assuntos
Encéfalo/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , RNA Mensageiro/metabolismo , Animais , Encéfalo/anatomia & histologia , Masculino , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA