Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Syst Biol ; 20(5): 506-520, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38491213

RESUMO

Codon optimality is a major determinant of mRNA translation and degradation rates. However, whether and through which mechanisms its effects are regulated remains poorly understood. Here we show that codon optimality associates with up to 2-fold change in mRNA stability variations between human tissues, and that its effect is attenuated in tissues with high energy metabolism and amplifies with age. Mathematical modeling and perturbation data through oxygen deprivation and ATP synthesis inhibition reveal that cellular energy variations non-uniformly alter the effect of codon usage. This new mode of codon effect regulation, independent of tRNA regulation, provides a fundamental mechanistic link between cellular energy metabolism and eukaryotic gene expression.


Assuntos
Códon , Metabolismo Energético , Estabilidade de RNA , RNA Mensageiro , Humanos , Metabolismo Energético/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Códon/genética , Uso do Códon , Biossíntese de Proteínas , RNA de Transferência/genética , RNA de Transferência/metabolismo , Trifosfato de Adenosina/metabolismo , Regulação da Expressão Gênica
2.
bioRxiv ; 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38260253

RESUMO

Aging and neurodegeneration entail diverse cellular and molecular hallmarks. Here, we studied the effects of aging on the transcriptome, translatome, and multiple layers of the proteome in the brain of a short-lived killifish. We reveal that aging causes widespread reduction of proteins enriched in basic amino acids that is independent of mRNA regulation, and it is not due to impaired proteasome activity. Instead, we identify a cascade of events where aberrant translation pausing leads to reduced ribosome availability resulting in proteome remodeling independently of transcriptional regulation. Our research uncovers a vulnerable point in the aging brain's biology - the biogenesis of basic DNA/RNA binding proteins. This vulnerability may represent a unifying principle that connects various aging hallmarks, encompassing genome integrity and the biosynthesis of macromolecules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA