Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS One ; 16(7): e0253741, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34283859

RESUMO

The corm of Hypoxis hemerocallidea, commonly known as the African potato, is used in traditional medicine to treat several medical conditions such as urinary infections, benign prostate hyperplasia, inflammatory conditions and testicular tumours. The metabolites contributing to the medicinal properties of H. hemerocallidea have been identified in several studies and, more recently, the active terpenoids of the plant were profiled. However, the biosynthetic pathways and the enzymes involved in the production of the terpene metabolites in H. hemerocallidea have not been characterised at a transcriptomic or proteomic level. In this study, total RNA extracted from the corm, leaf and flower tissues of H. hemerocallidea was sequenced on the Illumina HiSeq 2500 platform. A total of 143,549 transcripts were assembled de novo using Trinity and 107,131 transcripts were functionally annotated using the nr, GO, COG, KEGG and SWISS-PROT databases. Additionally, the proteome of the three tissues were sequenced using LC-MS/MS, revealing aspects of secondary metabolism and serving as data validation for the transcriptome. Functional annotation led to the identification of numerous terpene synthases such as nerolidol synthase, germacrene D synthase, and cycloartenol synthase amongst others. Annotations also revealed a transcript encoding the terpene synthase phytoalexin momilactone A synthase. Differential expression analysis using edgeR identified 946 transcripts differentially expressed between the three tissues and revealed that the leaf upregulates linalool synthase compared to the corm and the flower tissues. The transcriptome as well as the proteome of Hypoxis hemerocallidea presented here provide a foundation for future research.


Assuntos
Hypoxis/genética , Proteoma/genética , Proteômica , Transcriptoma/genética , Flores/genética , Regulação da Expressão Gênica de Plantas/genética , Folhas de Planta/genética , Solanum tuberosum/genética , Espectrometria de Massas em Tandem
2.
Sci Rep ; 10(1): 20539, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33239700

RESUMO

Dichapetalum cymosum produces the toxic fluorinated metabolite, fluoroacetate, presumably as a defence mechanism. Given the rarity of fluorinated metabolites in nature, the biosynthetic origin and function of fluoroacetate have been of particular interest. However, the mechanism for fluorination in D. cymosum was never elucidated. More importantly, there is a severe lack in knowledge on a genetic level for fluorometabolite-producing plants, impeding research on the subject. Here, we report on the first transcriptome for D. cymosum and investigate the wound response for insights into fluorometabolite production. Mechanical wounding studies were performed and libraries of the unwounded (control) and wounded (30 and 60 min post wounding) plant were sequenced using the Illumina HiSeq platform. A combined reference assembly generated 77,845 transcripts. Using the SwissProt, TrEMBL, GO, eggNOG, KEGG, Pfam, EC and PlantTFDB databases, a 69% annotation rate was achieved. Differential expression analysis revealed the regulation of 364 genes in response to wounding. The wound responses in D. cymosum included key mechanisms relating to signalling cascades, phytohormone regulation, transcription factors and defence-related secondary metabolites. However, the role of fluoroacetate in inducible wound responses remains unclear. Bacterial fluorinases were searched against the D. cymosum transcriptome but transcripts with homology were not detected suggesting the presence of a potentially different fluorinating enzyme in plants. Nevertheless, the transcriptome produced in this study significantly increases genetic resources available for D. cymosum and will assist with future research into fluorometabolite-producing plants.


Assuntos
Fluoracetatos/metabolismo , Magnoliopsida/genética , Folhas de Planta/genética , Estresse Mecânico , Transcriptoma/genética , Vias Biossintéticas/genética , Regulação para Baixo/genética , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Anotação de Sequência Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regulação para Cima/genética
3.
Protein J ; 35(6): 448-458, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27844275

RESUMO

The energetics of ligand binding to human eukaryotic elongation factor 1 gamma (heEF1γ) was investigated using reduced glutathione (GSH), oxidised glutathione (GSSG), glutathione sulfonate and S-hexylglutathione as ligands. The experiments were conducted using isothermal titration calorimetry, and the findings were supported using computational studies. The data show that the binding of these ligands to heEF1γ is enthalpically favourable and entropically driven (except for the binding of GSSG). The full length heEF1γ binds GSSG with lower affinity (K d = 115 µM), with more hydrogen-bond contacts (ΔH = -73.8 kJ/mol) and unfavourable entropy (-TΔS = 51.7 kJ/mol) compared to the glutathione transferase-like N-terminus domain of heEF1γ, which did not show preference to any specific ligand. Computational free binding energy calculations from the 10 ligand poses show that GSSG and GSH consistently bind heEF1γ, and that both ligands bind at the same site with a folded bioactive conformation. This study reveals the possibility that heEF1γ is a glutathione-binding protein.


Assuntos
Dissulfeto de Glutationa/química , Glutationa/análogos & derivados , Glutationa/química , Fator 1 de Elongação de Peptídeos/química , Calorimetria , Expressão Gênica , Glutationa/metabolismo , Dissulfeto de Glutationa/metabolismo , Glutationa Transferase/química , Glutationa Transferase/metabolismo , Humanos , Ligação de Hidrogênio , Cinética , Ligantes , Simulação de Dinâmica Molecular , Fator 1 de Elongação de Peptídeos/genética , Fator 1 de Elongação de Peptídeos/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia Estrutural de Proteína , Temperatura , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA