Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Abdom Imaging ; 40(7): 2606-12, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25989931

RESUMO

PURPOSE: Computed tomographic (CT) fluoroscopy-guided percutaneous cryoablation is an effective therapeutic method used to treat focal renal masses. The purpose of this study is to quantify the radiation dose to the patient and interventional radiologist during percutaneous cryoablation of renal masses using CT fluoroscopic guidance. METHODS: Over a 1-year period, the CT fluoroscopy time during percutaneous cryoablation of renal masses was recorded in 41 patients. The level of complexity of each procedure was designated as simple, intermediate, or complex. Patient organ radiation doses were estimated using an anthropomorphic model. Dose to the interventional radiologist was estimated using ion chamber survey meters. RESULTS: The average CT fluoroscopy time for technically simple cases was 47 s, 126 s for intermediate cases, and 264 s for complex cases. The relative risk of hematologic stomach and liver malignancy in patients undergoing this procedure was 1.003-1.074. The lifetime attributable risk of cancer ranged from 2 to 58, with the highest risk in younger patients for developing leukemia. The estimated radiation dose to the interventionalist without lead shielding was 390 mR (3.9 mGy) per year of cases. CONCLUSIONS: The radiation risk to the patient during CT fluoroscopy-guided percutaneous renal mass cryoablation is, as expected, related to procedure complexity. Quantification of patient organ radiation dose was estimated using an anthropomorphic model. This information, along with the associated relative risk of malignancy, may assist in evaluating risks of the procedure, particularly in younger patients. The radiation dose to the interventionist is low regardless of procedure complexity, but highlights the importance of lead shielding.


Assuntos
Criocirurgia , Neoplasias Renais/diagnóstico por imagem , Neoplasias Renais/cirurgia , Doses de Radiação , Radiografia Intervencionista , Tomografia Computadorizada por Raios X , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Fluoroscopia , Humanos , Rim/diagnóstico por imagem , Rim/cirurgia , Masculino , Pessoa de Meia-Idade , Risco , Adulto Jovem
2.
AJR Am J Roentgenol ; 202(5): 1072-7, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24758663

RESUMO

OBJECTIVE: The purpose of this study was threefold: to estimate the organ doses and effective doses (EDs) for seven neurovascular imaging protocols, to study the effect of beam collimation on ED, and to derive protocol-specific dose-area product (DAP)-to-ED conversion factors. MATERIALS AND METHODS: A cone-beam CT system was used to measure the organ doses for seven neurovascular imaging protocols. Two datasets were obtained: seven protocols without beam collimation (FOV, entire head) and four with beam collimation (FOV, from the base to the top of the skull). Measurements were performed on an adult male anthropomorphic phantom with 20 metal oxide semiconductor field-effect transistor (MOSFET) detectors placed in selected organs. The DAP values were recorded from the console. The EDs of five protocols were also estimated using Monte Carlo simulations software. The ED values were computed by multiplying measured organ doses to corresponding International Commission on Radiological Protection tissue-weighting factors. RESULTS: Without collimation, the EDs ranged from 0.16 to 1.6 mSv, and the DAP-to-ED conversion factors ranged from 0.035 to 0.076 mSv/Gy·cm(2). For the four protocols investigated with beam collimation, the ED was reduced by a factor of approximately 2, and the DAP-to-ED conversion factors were reduced by approximately 30%. For the five protocols also estimated with the Monte Carlo method, the estimated EDs were in agreement (< 20% deviation) with those determined by the MOSFET method. CONCLUSION: We have estimated ED for standard adult neuroimaging protocols in a 3D rotational angiography system. Our results provide a simple means of ED estimation using DAP console readings.


Assuntos
Angiografia/métodos , Protocolos Clínicos , Tomografia Computadorizada de Feixe Cônico/normas , Neuroimagem/métodos , Imagens de Fantasmas , Doses de Radiação , Adulto , Humanos , Masculino , Método de Monte Carlo
3.
J Urol ; 190(6): 2117-23, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23764073

RESUMO

PURPOSE: Computerized tomography use increased exponentially in the last 3 decades, and it is commonly used to evaluate many urological conditions. Ionizing radiation exposure from medical imaging is linked to the risk of malignancy. We measured the organ and calculated effective doses of different studies to determine whether the dose-length product method is an accurate estimation of radiation exposure. MATERIALS AND METHODS: An anthropomorphic male phantom validated for human organ dosimetry measurements was used to determine radiation doses. High sensitivity metal oxide semiconductor field effect transistor dosimeters were placed at 20 organ locations to measure specific organ doses. For each study the phantom was scanned 3 times using our institutional protocols. Organ doses were measured and effective doses were calculated on dosimetry. Effective doses measured by a metal oxide semiconductor field effect transistor dosimeter were compared to calculated effective doses derived from the dose-length product. RESULTS: The mean±SD effective dose on dosimetry for stone protocol, chest and abdominopelvic computerized tomography, computerized tomography urogram and renal cell carcinoma protocol computerized tomography was 3.04±0.34, 4.34±0.27, 5.19±0.64, 9.73±0.71 and 11.42±0.24 mSv, respectively. The calculated effective dose for these studies Was 3.33, 2.92, 5.84, 9.64 and 10.06 mSv, respectively (p=0.8478). CONCLUSIONS: The effective dose varies considerable for different urological computerized tomography studies. Renal stone protocol computerized tomography shows the lowest dose, and computerized tomography urogram and the renal cell carcinoma protocol accumulate the highest effective doses. The calculated effective dose derived from the dose-length product is a reasonable estimate of patient radiation exposure.


Assuntos
Técnicas de Diagnóstico Urológico/normas , Imagens de Fantasmas , Doses de Radiação , Tomografia Computadorizada por Raios X/normas , Humanos , Masculino
4.
J Urol ; 189(6): 2142-6, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23261481

RESUMO

PURPOSE: Patients with recurrent nephrolithiasis are often evaluated and followed with computerized tomography. Obesity is a risk factor for nephrolithiasis. We evaluated the radiation dose of computerized tomography in obese and nonobese adults. MATERIALS AND METHODS: We scanned a validated, anthropomorphic male phantom according to our institutional renal stone evaluation protocol. The obese model consisted of the phantom wrapped in 2 Custom Fat Layers (CIRS, Norfolk, Virginia), which have been verified to have the same radiographic tissue density as fat. High sensitivity metal oxide semiconductor field effect transistor dosimeters were placed at 20 organ locations in the phantoms to measure organ specific radiation doses. The nonobese and obese models have an approximate body mass index of 24 and 30 kg/m(2), respectively. Three runs of renal stone protocol computerized tomography were performed on each phantom under automatic tube current modulation. Organ specific absorbed doses were measured and effective doses were calculated. RESULTS: The bone marrow of each model received the highest dose and the skin received the second highest dose. The mean ± SD effective dose for the nonobese and obese models was 3.04 ± 0.34 and 10.22 ± 0.50 mSv, respectively (p <0.0001). CONCLUSIONS: The effective dose of stone protocol computerized tomography in obese patients is more than threefold higher than the dose in nonobese patients using automatic tube current modulation. The implication of this finding extends beyond the urological stone population and adds to our understanding of radiation exposure from medical imaging.


Assuntos
Obesidade/complicações , Imagens de Fantasmas , Doses de Radiação , Tomografia Computadorizada por Raios X/efeitos adversos , Carga Corporal (Radioterapia) , Índice de Massa Corporal , Humanos , Masculino , Modelos Teóricos , Nefrolitíase/diagnóstico por imagem , Monitoramento de Radiação/métodos , Recidiva , Valores de Referência , Tomografia Computadorizada por Raios X/métodos
5.
AJR Am J Roentgenol ; 201(5): W730-4, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24063388

RESUMO

OBJECTIVE: The purpose of this study was to measure the organ doses and estimate the effective dose for the standard brain perfusion CT protocol and erroneous protocols. MATERIALS AND METHODS: An anthropomorphic phantom with metal oxide semiconductor field effect transistor (MOSFET) detectors was scanned on a 64-MDCT scanner. Protocol 1 used a standard brain perfusion protocol with 80 kVp and fixed tube current of 200 mA. Protocol 2 used 120 kVp and fixed tube current of 200 mA. Protocol 3 used 120 kVp with automatic tube current modulation (noise index, 2.4; minimum, 100 mA; maximum, 520 mA). RESULTS: Compared with protocol 1, the effective dose was 2.8 times higher with protocol 2 and 7.8 times higher with protocol 3. For all protocols, the peak dose was highest in the skin, followed by the brain and calvarial marrow. Compared with protocol 1, the peak skin dose was 2.6 times higher with protocol 2 and 6.7 times higher with protocol 3. The peak skin dose for protocol 3 exceeded 3 Gy. The ocular lens received significant scatter radiation: 177 mGy for protocol 2 and 435 mGy for protocol 3, which were 4.6 and 11.3 times the dose for protocol 1, respectively. CONCLUSION: Compared with the standard protocol, erroneous protocols of increasing the tube potential from 80 kVp to 120 kVp will lead to a three- to fivefold increase in organ doses, and concurrent use of high peak kilovoltage with incorrectly programmed tube current modulation can increase dose to organs by 7- to 11-fold. Tube current modulation with a low noise index can lead to doses to the skin and ocular lens that are close to thresholds for tissue reactions.


Assuntos
Encéfalo/diagnóstico por imagem , Doses de Radiação , Radiometria/métodos , Tomografia Computadorizada por Raios X/métodos , Humanos , Imagens de Fantasmas , Tomografia Computadorizada por Raios X/instrumentação
6.
Pediatr Radiol ; 43(9): 1117-27, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23636537

RESUMO

BACKGROUND: Advanced multidetector CT systems facilitate volumetric image acquisition, which offers theoretic dose savings over helical acquisition with shorter scan times. OBJECTIVE: Compare effective dose (ED), scan duration and image noise using 320- and 64-detector CT scanners in various acquisition modes for clinical chest, abdomen and pelvis protocols. MATERIALS AND METHODS: ED and scan durations were determined for 64-detector helical, 160-detector helical and volume modes under chest, abdomen and pelvis protocols on 320-detector CT with adaptive collimation and 64-detector helical mode on 64-detector CT without adaptive collimation in a phantom representing a 5-year-old child. Noise was measured as standard deviation of Hounsfield units. RESULTS: Compared to 64-detector helical CT, all acquisition modes on 320-detector CT resulted in lower ED and scan durations. Dose savings were greater for chest (27-46%) than abdomen/pelvis (18-28%) and chest/abdomen/pelvis imaging (8-14%). Noise was similar across scanning modes, although some protocols on 320-detector CT produced slightly higher noise. CONCLUSION: Dose savings can be achieved for chest, abdomen/pelvis and chest/abdomen/pelvis examinations on 320-detector CT compared to helical acquisition on 64-detector CT, with shorter scan durations. Although noise differences between some modes reached statistical significance, this is of doubtful diagnostic significance and will be studied further in a clinical setting.


Assuntos
Artefatos , Imageamento Tridimensional/instrumentação , Imagens de Fantasmas , Doses de Radiação , Radiometria , Tomografia Computadorizada Espiral/instrumentação , Imagem Corporal Total/instrumentação , Criança , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Fatores de Tempo
7.
J Urol ; 187(3): 920-4, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22264465

RESUMO

PURPOSE: We measured organ specific radiation dose rates and determined effective dose rates during simulated ureteroscopy using a validated model. To calculate the effective dose, patients were exposed to ureteroscopic management of stones at our institution. MATERIALS AND METHODS: A validated anthropomorphic male phantom was placed on a fluoroscopy table and underwent simulated ureteroscopy. High sensitivity metal oxide semiconductor field effect transistor dosimeters were placed at 20 organ sites in the phantom and used to measure organ specific radiation doses. These dose rates were multiplied by the appropriate tissue weighting factor and summed to calculate effective dose rates. Also, we retrospectively reviewed the charts of patients who underwent ureteroscopy at our institution. A total of 30 nonobese males with data on fluoroscopy time were included in analysis. The median effective dose was determined by multiplying median fluoroscopy time by the effective dose rate. RESULTS: The skin entrance was exposed to the highest absorbed dose rate, followed by the small intestine (mean ± SD 0.3286 ± 0.0054 and 0.1882 ± 0.0194 mGy per second, respectively). The mean effective dose rate was 0.024 ± 0.0019 mSv per second. Median fluoroscopy time was 46.95 seconds (range 12.9 to 298.8). The median effective dose was 1.13 mSv (range 0.31 to 7.17). CONCLUSIONS: The fluoroscopy used during ureteroscopy contributes to overall radiation exposure in patients with nephrolithiasis. Nonobese males are exposed to a median of 1.13 mSv during ureteroscopy, similar to that of abdominopelvic x-ray. More data are needed to determine clinical implications but urologists must be aware and decrease patient radiation during ureteroscopy.


Assuntos
Doses de Radiação , Ureteroscopia , Urolitíase/diagnóstico por imagem , Carga Corporal (Radioterapia) , Humanos , Rim/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Imagens de Fantasmas , Radiografia , Estudos Retrospectivos , Fatores de Tempo , Ureter/efeitos da radiação , Bexiga Urinária/efeitos da radiação
8.
AJR Am J Roentgenol ; 199(5): 1129-35, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23096189

RESUMO

OBJECTIVE: The purpose of this study is to determine patient dose estimates for clinical pediatric cardiac-gated CT angiography (CTA) protocols on a 320-MDCT volume scanner. MATERIALS AND METHODS: Organ doses were measured using 20 metal oxide semiconductor field effect transistor (MOSFET) dosimeters. Radiation dose was estimated for volumetrically acquired clinical pediatric prospectively and retrospectively ECG-gated cardiac CTA protocols in 5-year-old and 1-year-old anthropomorphic phantoms on a 320-MDCT scanner. Simulated heart rates of 60 beats/min (5-year-old phantom) and 120 beats/min (1- and 5-year-old phantoms) were used. Effective doses (EDs) were calculated using average measured organ doses and International Commission on Radiological Protection 103 tissue-weighting factors. Dose-length product (DLP) was recorded for each examination and was used to develop dose conversion factors for pediatric cardiac examinations acquired with volume scan mode. DLP was also used to estimate ED according to recently published dose conversion factors for pediatric helical chest examinations. Repeated measures and paired Student t test analyses were performed. RESULTS: For the 5-year-old phantom, at 60 beats/min, EDs ranged from 1.2 mSv for a prospectively gated examination to 4.5 mSv for a retrospectively gated examination. For the 5-year-old phantom, at 120 beats/min, EDs ranged from 3.0 mSv for a prospectively gated examination to 4.9 mSv for a retrospectively gated examination. For the 1-year-old phantom, at 120 beats/min, EDs ranged from 2.7 mSv for a prospectively gated examination to 4.5 mSv for a retrospectively gated examination. CONCLUSION: EDs for 320-MDCT volumetrically acquired ECG-gated pediatric cardiac CTA are lower than those published for conventional 16- and 64-MDCT scanners.


Assuntos
Técnicas de Imagem de Sincronização Cardíaca , Angiografia Coronária/métodos , Imagens de Fantasmas , Doses de Radiação , Tomografia Computadorizada por Raios X/métodos , Carga Corporal (Radioterapia) , Calibragem , Pré-Escolar , Humanos , Lactente , Estudos Prospectivos , Estudos Retrospectivos
9.
AJR Am J Roentgenol ; 198(3): 621-7, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22358002

RESUMO

OBJECTIVE: The purpose of this study was to assess the effect of peak kilovoltage on radiation dose and image quality in adult neck MDCT. MATERIALS AND METHODS: An anthropomorphic phantom with metal oxide semiconductor field effect transistor detectors was imaged with a 64-MDCT scanner. The reference CT protocol called for 120 kVp, and images obtained with that protocol were compared with CT images obtained with protocols entailing 80, 100, and 140 kVp. All imaging was performed with automatic tube current modulation. Organ dose and effective dose were determined for each protocol and compared with those obtained with the 120-kVp protocol. Image noise was evaluated objectively and subjectively for each protocol. RESULTS: The highest organ doses for all protocols were to the thyroid, ocular lens, skin, and mandible. The greatest reductions in organ dose were for the bone marrow of the cervical spine and mandible: 43% and 35% with the 100-kVp protocol and 63% and 53% with the 80-kVp protocol. Effective dose decreased as much as 9% with the 100-kVp protocol and 12% with the 80-kVp protocol. Use of the 140-kVp protocol was associated with an increase in organ dose as high as 64% for bone marrow in the cervical spine and a 19% increase in effective dose. Image noise increased with lower peak kilovoltage. The measured noise difference was greatest at 80 kVp, absolute increases were less than 2.5 HU. There was no difference in subjective image quality among protocols. CONCLUSION: Reducing the voltage from 120 to 80 kVp for neck CT can result in greater than 50% reduction in the absorbed organ dose to the bone marrow of the cervical spine and mandible without impairment in subjective image quality.


Assuntos
Pescoço/diagnóstico por imagem , Tomografia Computadorizada Espiral/métodos , Adulto , Humanos , Imagens de Fantasmas , Doses de Radiação , Proteção Radiológica , Interpretação de Imagem Radiográfica Assistida por Computador , Valores de Referência
10.
AJR Am J Roentgenol ; 198(5): 1132-8, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22528904

RESUMO

OBJECTIVE: The purpose of this study was to assess the difference in absorbed organ dose and image quality for MDCT neck protocols using automatic tube current modulation alone compared with organ-based dose modulation and in-plane thyroid bismuth shielding. MATERIALS AND METHODS: An anthropomorphic female phantom with metal oxide semiconductor field effect transistor (MOSFET) detectors was scanned on a 64-MDCT scanner. The protocols included a reference neck CT protocol using automatic tube current modulation and three modified protocols: organ-based dose modulation, automatic tube current modulation with thyroid shield, and organ-based dose modulation with thyroid shield. Image noise was evaluated quantitatively with the SD of the attenuation value, and subjectively by two neuroradiologists. RESULTS: Organ-based dose modulation, automatic tube current modulation with thyroid shield, and organ-based dose modulation with thyroid shield protocols reduced the thyroid dose by 28%, 33%, and 45%, respectively, compared with the use of automatic tube current modulation alone (p ≤ 0.005). Organ-based dose modulation also reduced the radiation dose to the ocular lens (33-47%) compared with the use of automatic tube current modulation (p ≤ 0.04). There was no significant difference in measured noise and subjective image quality between the protocols. CONCLUSION: Both organ-based dose modulation and thyroid shields significantly reduce the thyroid organ dose without degradation of subjective image quality compared with automatic tube current modulation. Organ-based dose modulation has the additional benefit of dose reduction to the ocular lens.


Assuntos
Doses de Radiação , Proteção Radiológica/instrumentação , Glândula Tireoide/efeitos da radiação , Tomografia Computadorizada por Raios X , Carga Corporal (Radioterapia) , Feminino , Humanos , Pescoço , Imagens de Fantasmas , Radiometria , Software
11.
AJR Am J Roentgenol ; 199(1): W65-73, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22733933

RESUMO

OBJECTIVE: The purpose of this study was to assess the radiation dose distribution and image quality for organ-based dose modulation during adult thoracic MDCT. MATERIALS AND METHODS: Organ doses were measured using an anthropomorphic adult female phantom containing 30 metal oxide semiconductor field-effect transistor detectors on a dual-source MDCT scanner with two protocols: standard tube current modulation thoracic CT and organ-based dose modulation using a 120° radial arc. Radiochromic film measured the relative axial dose. Noise was measured to evaluate image quality. Breast tissue location across the anterior aspect of the thorax was retrospectively assessed in 100 consecutive thoracic MDCT examinations. RESULTS: There was a 17-47% decrease (p = < 0.05) in anterior thoracic organ dose and a maximum 52% increase (p = < 0.05) in posterior thoracic organ dose using organ-based dose modulation compared with tube current modulation. Effective dose (SD) for tube current modulation and organ-based dose modulation were 5.25 ± 0.36 mSv and 4.42 ± 0.30 mSv, respectively. Radiochromic film analysis showed a 30% relative midline anterior-posterior gradient. There was no statistically significant difference in image noise. Adult female breast tissue was located within an average anterior angle of 155° (123-187°). CONCLUSION: Organ-based dose modulation CT using an anterior 120° arc can reduce the organ dose in the anterior aspect of the thorax with a compensatory organ dose increase posteriorly without impairment of image quality. Laterally located breast tissue will have higher organ doses than medially located breast tissue when using organ-based dose modulation. The benefit of this dose reduction must be clinically determined on the basis of the relationship of the irradiated organs to the location of the prescribed radial arc used in organ-based dose modulation.


Assuntos
Exposição Ambiental/análise , Doses de Radiação , Radiografia Torácica/métodos , Tomografia Computadorizada por Raios X/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Mama , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Imagens de Fantasmas , Proteção Radiológica/métodos , Intensificação de Imagem Radiográfica , Dosagem Radioterapêutica , Estudos Retrospectivos , Tórax , Adulto Jovem
12.
Med Phys ; 38(6): 3232-45, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21815398

RESUMO

PURPOSE: A dual modality SPECT-CT prototype system dedicated to uncompressed breast imaging (mammotomography) has been developed. The computed tomography subsystem incorporates an ultrathick K-edge filtration technique producing a quasi-monochromatic x-ray cone beam that optimizes the dose efficiency of the system for lesion imaging in an uncompressed breast. Here, the absorbed dose in various geometric phantoms and in an uncompressed and pendant cadaveric breast using a normal tomographic cone beam imaging protocol is characterized using both thermoluminescent dosimeter (TLD) measurements and ionization chamber-calibrated radiochromic film. METHODS: Initially, two geometric phantoms and an anthropomorphic breast phantom are filled in turn with oil and water to simulate the dose to objects that mimic various breast shapes having effective density bounds of 100% fatty and glandular breast compositions, respectively. Ultimately, an excised human cadaver breast is tomographically scanned using the normal tomographic imaging protocol, and the dose to the breast tissue is evaluated and compared to the earlier phantom-based measurements. RESULTS: Measured trends in dose distribution across all breast geometric and anthropomorphic phantom volumes indicate lower doses in the medial breast and more proximal to the chest wall, with consequently higher doses near the lateral peripheries and nipple regions. Measured doses to the oil-filled phantoms are consistently lower across all volume shapes due to the reduced mass energy-absorption coefficient of oil relative to water. The mean measured dose to the breast cadaver, composed of adipose and glandular tissues, was measured to be 4.2 mGy compared to a mean whole-breast dose of 3.8 and 4.5 mGy for the oil- and water-filled anthropomorphic breast phantoms, respectively. CONCLUSIONS: Assuming rotational symmetry due to the tomographic acquisition exposures, these results characterize the 3D dose distributions in an uncompressed human breast tissue volume for this dedicated breast imaging device and illustrate advantages of using the novel ultrathick K-edge filtered beam to minimize the dose to the breast during fully-3D imaging.


Assuntos
Mama/efeitos da radiação , Dosimetria Fotográfica/métodos , Mamografia/instrumentação , Doses de Radiação , Calibragem , Cor , Feminino , Humanos , Pessoa de Meia-Idade , Imagens de Fantasmas , Dosimetria Termoluminescente
13.
Med Phys ; 38(1): 397-407, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21361208

RESUMO

PURPOSE: Radiation-dose awareness and optimization in CT can greatly benefit from a dose-reporting system that provides dose and risk estimates specific to each patient and each CT examination. As the first step toward patient-specific dose and risk estimation, this article aimed to develop a method for accurately assessing radiation dose from CT examinations. METHODS: A Monte Carlo program was developed to model a CT system (LightSpeed VCT, GE Healthcare). The geometry of the system, the energy spectra of the x-ray source, the three-dimensional geometry of the bowtie filters, and the trajectories of source motions during axial and helical scans were explicitly modeled. To validate the accuracy of the program, a cylindrical phantom was built to enable dose measurements at seven different radial distances from its central axis. Simulated radial dose distributions in the cylindrical phantom were validated against ion chamber measurements for single axial scans at all combinations of tube potential and bowtie filter settings. The accuracy of the program was further validated using two anthropomorphic phantoms (a pediatric one-year-old phantom and an adult female phantom). Computer models of the two phantoms were created based on their CT data and were voxelized for input into the Monte Carlo program. Simulated dose at various organ locations was compared against measurements made with thermoluminescent dosimetry chips for both single axial and helical scans. RESULTS: For the cylindrical phantom, simulations differed from measurements by -4.8% to 2.2%. For the two anthropomorphic phantoms, the discrepancies between simulations and measurements ranged between (-8.1%, 8.1%) and (-17.2%, 13.0%) for the single axial scans and the helical scans, respectively. CONCLUSIONS: The authors developed an accurate Monte Carlo program for assessing radiation dose from CT examinations. When combined with computer models of actual patients, the program can provide accurate dose estimates for specific patients.


Assuntos
Método de Monte Carlo , Neoplasias Induzidas por Radiação/etiologia , Medicina de Precisão/métodos , Doses de Radiação , Tomografia Computadorizada por Raios X/efeitos adversos , Adulto , Feminino , Humanos , Lactente , Imagens de Fantasmas , Medição de Risco , Dosimetria Termoluminescente
14.
Med Phys ; 38(1): 408-19, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21361209

RESUMO

PURPOSE: Current methods for estimating and reporting radiation dose from CT examinations are largely patient-generic; the body size and hence dose variation from patient to patient is not reflected. Furthermore, the current protocol designs rely on dose as a surrogate for the risk of cancer incidence, neglecting the strong dependence of risk on age and gender. The purpose of this study was to develop a method for estimating patient-specific radiation dose and cancer risk from CT examinations. METHODS: The study included two patients (a 5-week-old female patient and a 12-year-old male patient), who underwent 64-slice CT examinations (LightSpeed VCT, GE Healthcare) of the chest, abdomen, and pelvis at our institution in 2006. For each patient, a nonuniform rational B-spine (NURBS) based full-body computer model was created based on the patient's clinical CT data. Large organs and structures inside the image volume were individually segmented and modeled. Other organs were created by transforming an existing adult male or female full-body computer model (developed from visible human data) to match the framework defined by the segmented organs, referencing the organ volume and anthropometry data in ICRP Publication 89. A Monte Carlo program previously developed and validated for dose simulation on the LightSpeed VCT scanner was used to estimate patient-specific organ dose, from which effective dose and risks of cancer incidence were derived. Patient-specific organ dose and effective dose were compared with patient-generic CT dose quantities in current clinical use: the volume-weighted CT dose index (CTDIvol) and the effective dose derived from the dose-length product (DLP). RESULTS: The effective dose for the CT examination of the newborn patient (5.7 mSv) was higher but comparable to that for the CT examination of the teenager patient (4.9 mSv) due to the size-based clinical CT protocols at our institution, which employ lower scan techniques for smaller patients. However, the overall risk of cancer incidence attributable to the CT examination was much higher for the newborn (2.4 in 1000) than for the teenager (0.7 in 1000). For the two pediatric-aged patients in our study, CTDIvol underestimated dose to large organs in the scan coverage by 30%-48%. The effective dose derived from DLP using published conversion coefficients differed from that calculated using patient-specific organ dose values by -57% to 13%, when the tissue weighting factors of ICRP 60 were used, and by -63% to 28%, when the tissue weighting factors of ICRP 103 were used. CONCLUSIONS: It is possible to estimate patient-specific radiation dose and cancer risk from CT examinations by combining a validated Monte Carlo program with patient-specific anatomical models that are derived from the patients' clinical CT data and supplemented by transformed models of reference adults. With the construction of a large library of patient-specific computer models encompassing patients of all ages and weight percentiles, dose and risk can be estimated for any patient prior to or after a CT examination. Such information may aid in decisions for image utilization and can further guide the design and optimization of CT technologies and scan protocols.


Assuntos
Neoplasias Induzidas por Radiação/etiologia , Medicina de Precisão/métodos , Doses de Radiação , Tomografia Computadorizada por Raios X/efeitos adversos , Adulto , Criança , Feminino , Humanos , Lactente , Masculino , Órgãos em Risco/efeitos da radiação , Medição de Risco
15.
AJR Am J Roentgenol ; 197(4): 778-82, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21940563

RESUMO

OBJECTIVE: The purpose of this article is to compare the radiation dose of conventional fluoroscopy-guided lumbar epidural steroid injections (ESIs) and CT fluoroscopy (CTF)-guided lumbar ESI using both clinical data and anthropomorphic phantoms. MATERIALS AND METHODS: We performed a retrospective review of dose parameters for 14 conventional fluoroscopy ESI procedures performed by one proceduralist and 42 CTF-guided ESIs performed by three proceduralists (14 each). By use of imaging techniques similar to those for our clinical cohorts, a commercially available anthropomorphic male phantom with metal oxide semiconductor field effect transistor detectors was scanned to obtain absorbed organ doses for conventional fluoroscopy-guided and CTF-guided ESIs. Effective dose (ED) was calculated from measured organ doses. RESULTS: The mean conventional fluoroscopy time for ESI was 37 seconds, and the mean procedural CTF time was 4.7 seconds. Calculated ED for conventional fluoroscopy was 0.85 mSv compared with 0.45 mSv for CTF. The greatest contribution to the radiation dose from CTF-guided ESI came from the planning lumbar spine CT scan, which had an ED of 2.90 mSv when z-axis ranged from L2 to S1. This resulted in a total ED for CTF-guided ESI (lumbar spine CT scan plus CTF) of 3.35 mSv. CONCLUSION: The ED for the CTF-guided ESI was almost half that of conventional fluoroscopy because of the shorter fluoroscopy time. However, the overall radiation dose for CTF-guided ESIs can be up to four times higher when a full diagnostic lumbar CT scan is performed as part of the procedure. Radiation dose reduction for CTF-guided ESI is best achieved by minimizing the dose from the preliminary planning lumbar spine CT scan.


Assuntos
Fluoroscopia/métodos , Injeções Epidurais , Injeções Espinhais , Dor Lombar/tratamento farmacológico , Doses de Radiação , Radiografia Intervencionista/métodos , Esteroides/administração & dosagem , Tomografia Computadorizada por Raios X/métodos , Idoso , Feminino , Humanos , Vértebras Lombares , Masculino , Imagens de Fantasmas , Estudos Retrospectivos , Fatores de Tempo
16.
Med Phys ; 37(9): 4782-92, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20964198

RESUMO

PURPOSE: The authors present a means to measure high-resolution, two-dimensional organ dose distributions in an anthropomorphic phantom of heterogeneous tissue composition using XRQA radiochromic film. Dose distributions are presented for the lungs, liver, and kidneys to demonstrate the organ volume dosimetry technique. XRQA film response accuracy was validated using thermoluminescent dosimeters (TLDs). METHODS: XRQA film and TLDs were first exposed at the center of two CTDI head phantoms placed end-to-end, allowing for a simple cylindrical phantom of uniform scatter material for verification of film response accuracy and sensitivity in a computed tomography (CT) exposure geometry; the TLD and film dosimeters were exposed separately. In a similar manner, TLDs and films were placed between cross-sectional slabs of a 5 yr old anthropomorphic phantom's thorax and abdomen regions. The anthropomorphic phantom was used to emulate real pediatric patient geometry and scatter conditions. The phantom consisted of five different tissue types manufactured to attenuate the x-ray beam within 1%-3% of normal tissues at CT beam energies. Software was written to individually calibrate TLD and film dosimeter responses for different tissue attenuation factors, to spatially register dosimeters, and to extract dose responses from film for TLD comparison. TLDs were compared to film regions of interest extracted at spatial locations corresponding to the TLD locations. RESULTS: For the CTDI phantom exposure, the film and TLDs measured an average difference in dose response of 45% (SD +/- 2%). Similar comparisons within the anthropomorphic phantom also indicated a consistent difference, tracking along the low and high dose regions, for the lung (28%) (SD +/- 8%) and liver and kidneys (15%) (SD +/- 4%). The difference between the measured film and TLD dose values was due to the lower response sensitivity of the film that arose when the film was oriented with its large surface area parallel to the main axis of the CT beam. The consistency in dose response difference allowed for a tissue specific correction to be applied. Once corrected, the average film response agreed to better than 3% (SD +/- 2%) for the CTDI scans, and for the anthropomorphic phantom scans: 3% (SD +/- 3%) for the lungs, 5% (SD +/- 3%) for the liver, and 4% (SD +/- 3%) for the kidneys. Additionally, XRQA film measured a heterogeneous dose distribution within the organ volumes. The extent of the dose distribution heterogeneity was not measurable with the TLDs due to the limitation on the number of TLDs loadable in the regions of the phantom organs. In this regard, XRQA film demonstrated an advantage over the TLD method by discovering a 15% greater maximum dose to lung in a region unmeasured by TLDs. CONCLUSIONS: The films demonstrated a lower sensitivity to absorbed dose measurements due to the geometric inefficiency of measuring dose from a beam situated end-on to the film. Once corrected, the film demonstrated equivalent dose measurement accuracy as TLD detectors with the added advantage of relatively simple measurement of high-resolution dose distributions throughout organ volumes.


Assuntos
Radiometria/métodos , Tomografia Computadorizada por Raios X/métodos , Calibragem , Pré-Escolar , Humanos , Imagens de Fantasmas , Doses de Radiação , Dosimetria Termoluminescente
17.
AJR Am J Roentgenol ; 194(1): 186-90, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20028922

RESUMO

OBJECTIVE: The objective of our study was to measure absorbed doses and calculate effective dose (ED) from cone beam CT (CBCT) with metal oxide semiconductor field effect transistor (MOSFET) detectors in an anthropomorphic phantom and to estimate the risk of cancer incidence for CBCT. MATERIALS AND METHODS: Abdominal CBCT was performed in an anthropomorphic phantom of a 5-year-old child using the On-Board Imager with arbitrarily designated standard-dose (125 kVp, 80 mA, 25 milliseconds) and low-dose (125 kVp, 40 mA, 10 milliseconds) modes. The full-fan mode was used, and 20 MOSFET dosimeters were used to measure the absorbed doses in various organs. We calculated the ED, the lifetime attributable risk (LAR) for cancer incidence, and relative risk (RR) of cancer induction from a single scan for both standard- and low-dose modes in 5-year-old children. RESULTS: The highest absorbed doses were found in the skin, ascending colon, and stomach. The mean ED was 37.8+/-0.7 (SD) mSv for the standard-dose mode and 8.1+/-0.2 mSv for the low-dose mode. The LAR of cancer incidence ranged from 23 to 144 cases per 100,000 exposed persons for the standard-dose mode and from five to 31 cases per 100,000 exposed persons for the low-dose mode. The RR of cancer incidence ranged from 1.003 to 1.054 for the standard-dose mode and from 1.001 to 1.012 for the low-dose mode. CONCLUSION: The ED from pediatric CBCT using the standard-dose mode was considerably higher than that of MDCT, whereas the ED for CBCT using the low-dose mode was comparable to that of abdominal MDCT. For abdominal CBCT in the pediatric phantom, the highest LARs were for colon and bladder cancers and the highest RRs were for stomach and liver cancers.


Assuntos
Neoplasias Induzidas por Radiação/etiologia , Imagens de Fantasmas , Doses de Radiação , Radiometria/métodos , Tomografia Computadorizada por Raios X , Carga Corporal (Radioterapia) , Pré-Escolar , Humanos , Incidência , Neoplasias Induzidas por Radiação/epidemiologia , Radiografia Abdominal , Medição de Risco
18.
AJR Am J Roentgenol ; 195(2): 433-8, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20651201

RESUMO

OBJECTIVE: The purpose of this study was to determine, using an anthropomorphic phantom, whether patients are subject to variable radiation doses based on scanner assignment for routine CT of the brain. MATERIALS AND METHODS: Twenty metal oxide semiconductor field effect transistor dosimeters were placed in the brain of a male anthropomorphic phantom scanned three times with a routine clinical brain CT protocol on four scanners from one manufacturer in four configurations and on one 64-MDCT scanner from another manufacturer. Absorbed organ doses were measured for skin, cranium, brain, lens of the eye, mandible, and thyroid. Effective dose was calculated on the basis of the dose-length product recorded on each scanner. RESULTS: Organ dose ranges were as follows: cranium, 2.57-3.47 cGy; brain, 2.34-3.78 cGy; lens, 2.51-5.03 cGy; mandible 0.17-0.48 cGy; and thyroid, 0.03-0.28 cGy. Statistically significant differences between scanners with respect to dose were recorded for brain and lens (p < 0.05). Absorbed doses were lowest on the single-detector scanner. In the comparison of MDCT scanners, the highest doses were found on the 4-MDCT scanner and the dual-source 64-MDCT scanner not capable of gantry tilt. Effective dose ranged from 1.22 to 1.86 mSv. CONCLUSION: According to the phantom data, patients are subject to different organ doses in the lens and brain depending on scanner assignment. At our institution with existing protocols, absorbed doses at brain CT are lowest with the single-detector CT scanner, followed by MDCT scanners capable of gantry tilt. On scanners without gantry tilt, CT of the brain should be performed with careful head positioning and shielding of the orbits. These precautions are especially true for patients who need repeated scanning and for pediatric patients.


Assuntos
Carga Corporal (Radioterapia) , Encéfalo/diagnóstico por imagem , Doses de Radiação , Radiometria/estatística & dados numéricos , Tomografia Computadorizada por Raios X/instrumentação , Tomografia Computadorizada por Raios X/estatística & dados numéricos , Adulto , Criança , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Masculino , Imagens de Fantasmas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
19.
AJR Am J Roentgenol ; 192(6): 1726-30, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19457841

RESUMO

OBJECTIVE: The purpose of this study was to derive from the kerma area product the dose conversion coefficient for estimating the effective dose for lumbar epidural steroid injection procedures. MATERIALS AND METHODS: A mobile fluoroscopy system was used for fluoroscopic imaging guidance of lumbar epidural steroid injection procedures. For acquisition of organ dose measurements, 20 diagnostic metal oxide semiconductor field effect transistor detectors were placed at each organ in an anthropomorphic phantom of a man, and these detectors were attached to four mobile metal oxide semiconductor field effect transistor wireless bias supplies to obtain the organ dose readings. The kerma area product was recorded from the system console and independently validated with an ion chamber and therapeutic x-ray film. Fluoroscopy was performed on the phantom for 10 minutes for acquisition of the dose rate for each organ, and the average clinical procedure time was multiplied by each organ dose rate for acquisition of individual organ doses. The effective dose was computed by summing the product of each organ dose and the corresponding tissue weighting factor from International Commission on Radiologic Protection publication 60. RESULTS: The effective dose was computed as 0.93 mSv for an average lumbar epidural steroid injection procedure (fluoroscopic time, 40.7 seconds). The corresponding kerma area product was 2.80 Gy.cm(2). The dose conversion coefficient was derived as 0.33 mSv/(Gy.cm(2)). CONCLUSION: The effective dose for lumbar epidural steroid injection can be easily estimated by multiplying the derived dose conversion coefficient by the console-displayed kerma area product.


Assuntos
Algoritmos , Carga Corporal (Radioterapia) , Fluoroscopia/métodos , Vértebras Lombares/diagnóstico por imagem , Radiografia Intervencionista/métodos , Radiometria/métodos , Esteroides/administração & dosagem , Simulação por Computador , Humanos , Injeções Epidurais , Modelos Biológicos , Doses de Radiação , Proteção Radiológica/métodos
20.
AJR Am J Roentgenol ; 193(4): 1019-24, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19770324

RESUMO

OBJECTIVE: The purpose of this study was to corroborate the relation between the estimated absorbed fetal dose derived from directly measured uterine doses early in the first trimester and the volume CT dose index (CTDI(vol)) for 16- and 64-MDCT of the maternal chest, abdomen, and pelvis. MATERIALS AND METHODS: Estimated absorbed fetal dose was measured with a metal oxide semiconductor field effect transistor (MOSFET) dosimeter placed in the expected uterine location in an anthropomorphic phantom of a woman and scanned with 16- and 64-MDCT units of one vendor and a 64-MDCT unit of another vendor. A trauma chest, abdomen, and pelvis protocol and an abdomen and pelvis protocol were used. Absorbed uterine dose was measured directly from the MOSFET detector. The CTDI(vol) for each protocol was recorded from the scanner console. Correlation between mean uterine dose and CTDI(vol) was tested with a goodness of fit model. RESULTS: The absorbed uterine dose ranged from 9.25 to 37.7 mGy. Absorbed fetal dose in the early first trimester correlated with CTDI(vol) in a linear regression equation. For the 16-MDCT scanner, at 130 kVp, the fetal dose was 2.091 x CTDI(vol) - 9.489. For the 64-MDCT scanner from the same vendor, at 120 kVp, the fetal dose was 1.113 x CTDI(vol) + 1.773. For the 64-MDCT scanner from the other vendor, at 120 kVp, the fetal dose was 1.378 x CTDI(vol) - 1.014. The goodness of fit results (R(2)) for the equations were 0.97, 0.98, and 0.99. CONCLUSION: Estimated absorbed fetal dose during the first trimester of pregnancy is linearly associated with CTDI(vol) regardless of beam energy, detector configuration, and scanner manufacturer.


Assuntos
Carga Corporal (Radioterapia) , Feto/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Contagem Corporal Total/métodos , Adulto , Feminino , Humanos , Imagens de Fantasmas , Gravidez , Primeiro Trimestre da Gravidez , Doses de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA