Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Commun ; 9(1): 1128, 2018 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-29555902

RESUMO

Animals respond to predators by altering their behavior and physiological states, but the underlying signaling mechanisms are poorly understood. Using the interactions between Caenorhabditis elegans and its predator, Pristionchus pacificus, we show that neuronal perception by C. elegans of a predator-specific molecular signature induces instantaneous escape behavior and a prolonged reduction in oviposition. Chemical analysis revealed this predator-specific signature to consist of a class of sulfolipids, produced by a biochemical pathway required for developing predacious behavior and specifically induced by starvation. These sulfolipids are detected by four pairs of C. elegans amphid sensory neurons that act redundantly and recruit cyclic nucleotide-gated (CNG) or transient receptor potential (TRP) channels to drive both escape and reduced oviposition. Functional homology of the delineated signaling pathways and abolishment of predator-evoked C. elegans responses by the anti-anxiety drug sertraline suggests a likely conserved or convergent strategy for managing predator threats.


Assuntos
Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/parasitologia , Lipídeos/fisiologia , Comportamento Predatório/fisiologia , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/fisiologia , Feminino , Lipídeos/química , Oviposição/fisiologia , Comportamento Predatório/efeitos dos fármacos , Rabditídios/patogenicidade , Rabditídios/fisiologia , Células Receptoras Sensoriais/fisiologia , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Sertralina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Canais de Potencial de Receptor Transitório/fisiologia , Ácido gama-Aminobutírico/fisiologia
2.
Nat Commun ; 6: 8264, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26372413

RESUMO

A major challenge in neuroscience is to reliably activate individual neurons, particularly those in deeper brain regions. Current optogenetic approaches require invasive surgical procedures to deliver light of specific wavelengths to target cells to activate or silence them. Here, we demonstrate the use of low-pressure ultrasound as a non-invasive trigger to activate specific ultrasonically sensitized neurons in the nematode, Caenorhabditis elegans. We first show that wild-type animals are insensitive to low-pressure ultrasound and require gas-filled microbubbles to transduce the ultrasound wave. We find that neuron-specific misexpression of TRP-4, the pore-forming subunit of a mechanotransduction channel, sensitizes neurons to ultrasound stimulus, resulting in behavioural outputs. Furthermore, we use this approach to manipulate the function of sensory neurons and interneurons and identify a role for PVD sensory neurons in modifying locomotory behaviours. We suggest that this method can be broadly applied to manipulate cellular functions in vivo.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Interneurônios/fisiologia , Locomoção/fisiologia , Células Receptoras Sensoriais/fisiologia , Canais de Cátion TRPC/genética , Ondas Ultrassônicas , Animais , Caenorhabditis elegans , Interneurônios/metabolismo , Microbolhas , Neurônios/metabolismo , Neurônios/fisiologia , Células Receptoras Sensoriais/metabolismo
3.
Neuron ; 86(2): 428-41, 2015 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-25864633

RESUMO

The ability to evaluate variability in the environment is vital for making optimal behavioral decisions. Here we show that Caenorhabditis elegans evaluates variability in its food environment and modifies its future behavior accordingly. We derive a behavioral model that reveals a critical period over which information about the food environment is acquired and predicts future search behavior. We also identify a pair of high-threshold sensory neurons that encode variability in food concentration and the downstream dopamine-dependent circuit that generates appropriate search behavior upon removal from food. Further, we show that CREB is required in a subset of interneurons and determines the timescale over which the variability is integrated. Interestingly, the variability circuit is a subset of a larger circuit driving search behavior, showing that learning directly modifies the very same neurons driving behavior. Our study reveals how a neural circuit decodes environmental variability to generate contextually appropriate decisions.


Assuntos
Comportamento Animal/fisiologia , Caenorhabditis elegans/fisiologia , Dopamina/metabolismo , Comportamento Alimentar/fisiologia , Plasticidade Neuronal/fisiologia , Células Receptoras Sensoriais/fisiologia , Adaptação Fisiológica/fisiologia , Animais , Ácido Glutâmico/metabolismo , Interneurônios/metabolismo , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA