Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
2.
Extremophiles ; 13(3): 425-35, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19296197

RESUMO

A thermophilic Geobacillus bacterium secreting high activity of endo-glucanase (EC 3.2.1.4) was isolated from rice straw compost supplemented with pig manure. A full-length gene of 1,104 bp, celA, encoding this glycosyl hydrolase family 5 endo-glucanase of 368 amino acids was isolated. No related gene from Geobacillus has been reported previously. The recombinant CelA expressed in Escherichia coli had an optimal activity at 65 degrees C and pH 5.0, and it exhibited tenfold greater specific activity than the commercially available Trichoderma reesei endo-glucanase. CelA displayed activity over a broad temperature range from 45 to 75 degrees C and was a thermostable enzyme with 90% activity retained after heating at 65 degrees C for 6 h. Interestingly, CelA activity could be enhanced by 100% in the presence of 2 mM MnSO(4). CelA had high specific activity over beta-D-glucan from barley and Lichenan, making it a potentially useful enzyme in biofuel and food industries.


Assuntos
Bacillus/enzimologia , Glicosídeo Hidrolases/isolamento & purificação , Sequência de Aminoácidos , Bacillus/genética , Sequência de Bases , Primers do DNA , DNA Ribossômico/genética , Estabilidade Enzimática , Escherichia coli/genética , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Temperatura
3.
Front Plant Sci ; 10: 1594, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31850050

RESUMO

Somatic embryogenesis is commonly used for clonal propagation of a wide variety of plant species. Induction of protocorm-like-bodies (PLBs), which are capable of developing into individual plants, is a routine tissue culture-based practice for micropropagation of orchid plants. Even though PLBs are often regarded as somatic embryos, our recent study provides molecular evidence to argue that PLBs are not derived from somatic embryogenesis. Here, we report and characterize the somatic embryonic tissues induced by Phalaenopsis aphrodite LEAFY COTYLEDON1 (PaLEC1) in Phalaenopsis equestris. We found that PaLEC1-induced somatic tissues are morphologically different from PLBs, supporting our molecular study that PLBs are not of somatic embryonic origin. The embryonic identity of PaLEC1-induced embryonic tissues was confirmed by expression of the embryonic-specific transcription factors FUSCA3 (FUS3) and ABSCISIC ACID INSENSITIVE3 (ABI3), and seed storage proteins 7S GLOBULIN and OLEOSIN. Moreover, PaLEC1-GFP protein was found to be associated with the Pa7S-1 and PaFUS3 promoters containing the CCAAT element, supporting that PaLEC1 directly regulates embryo-specific processes to activate the somatic embryonic program in P. equestris. Despite diverse embryonic structures, PaLEC1-GFP-induced embryonic structures are pluripotent and capable of generating new shoots. Our study resolves the long-term debate on the developmental identity of PLB and suggests that somatic embryogenesis may be a useful approach to clonally propagate orchid seedlings.

4.
Front Plant Sci ; 10: 1258, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31649713

RESUMO

Orchids comprise one of the largest, most highly evolved angiosperm families, and form an extremely peculiar group of plants. Various orchids are available through traditional breeding and micro-propagation since they are valuable as potted plants and/or cut flowers in horticultural markets. The flowering of orchids is generally influenced by environmental signals such as temperature and endogenous developmental programs controlled by genetic factors as is usual in many flowering plant species. The process of floral transition is connected to the flower developmental programs that include floral meristem maintenance and floral organ specification. Thanks to advances in molecular and genetic technologies, the understanding of the molecular mechanisms underlying orchid floral transition and flower developmental processes have been widened, especially in several commercially important orchids such as Phalaenopsis, Dendrobium and Oncidium. In this review, we consolidate recent progress in research on the floral transition and flower development of orchids emphasizing representative genes and genetic networks, and also introduce a few successful cases of manipulation of orchid flowering/flower development through the application of molecular breeding or biotechnology tools.

5.
Plant Cell Environ ; 31(8): 1074-85, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18419734

RESUMO

Tryptophan (Trp) is an essential amino acid in humans, and in plants, it plays a major role in the regulation of plant development and defence responses. However, little is known about Trp-mediated cadmium (Cd) tolerance. Gene expression analysis showed that Arabidopsis thaliana tryptophan synthase beta 1 (AtTSB1) is up-regulated in plants treated with Cd; hence, we investigated whether this gene is involved in Cd tolerance. Exogenous application of Trp to wild-type Arabidopsis enhances Cd tolerance. Cd tolerance in the Trp-overproducing mutant trp5-1 was associated with high chlorophyll levels and low lipid peroxidation, as indicated by malondialdehyde 4-hydroxyalkenal level, whereas the wild-type developed symptoms of severe chlorosis. Moreover, the Trp-auxotroph mutant trp2-1 was sensitive to Cd. CaMV 35S promoter-driven AtTSB1 enhanced Trp accumulation and improved Cd tolerance in transgenic Arabidopsis and tomato plants without increasing the level of Cd. Moreover, reverse transcription-polymerase chain reaction confirmed that enhanced level of Trp in AtTSB1 transgenic Arabidopsis plants affected the expression of AtZIP4 and AtZIP9 metal transporters, which interfered with Cd ion trafficking, a mechanism of transcriptional regulation that does not exist in wild-type plants. Overexpression of AtTSB1 in transgenic tomato also produced higher Trp synthase-beta enzyme activity than that in wild-type plants. These results implicate that Trp could be involved in Cd defence.


Assuntos
Adaptação Fisiológica/efeitos dos fármacos , Proteínas de Arabidopsis/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/enzimologia , Cádmio/toxicidade , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/enzimologia , Triptofano Sintase/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Solanum lycopersicum/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Modelos Biológicos , Plantas Geneticamente Modificadas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Triptofano/metabolismo , Triptofano Sintase/genética
6.
Plant Signal Behav ; 12(5): e1322245, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28448202

RESUMO

Genetic pathways relevant to flowering of Arabidopsis are under the control of environmental cues such as day length and temperatures, and endogenous signals including phytohormones and developmental aging. However, genes and even regulatory pathways for flowering identified in crops show divergence from those of Arabidopsis and often do not have functional equivalents to Arabidopsis and/or existing species- or genus-specific regulators and show modified or novel pathways. Orchids are the largest, most highly evolved flowering plants, and form an extremely peculiar group of plants. Here, we briefly summarize the flowering pathways of Arabidopsis, rice and wheat and present them alongside recent discoveries/progress in orchid flowering and flower developmental processes including our transgenic Phalaenopsis orchids for LEAFY overexpression. Potential biotechnological applications in flowering/flower development of orchids with potential target genes are also discussed from an interactional and/or comparative viewpoint.


Assuntos
Flores/crescimento & desenvolvimento , Flores/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Biotecnologia , Flores/genética , Regulação da Expressão Gênica de Plantas , Orchidaceae/genética , Orchidaceae/crescimento & desenvolvimento , Orchidaceae/metabolismo , Oryza/genética , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo
7.
Bot Stud ; 57(1): 30, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28597440

RESUMO

BACKGROUND: Phalaenopsis orchid (Phal. orchid) is visually attractive and it is important economic floriculture species. Phal. orchids have many unique biological features. However, investigation of these features and validation on their biological functions are limited due to the lack of an efficient transformation method. RESULTS: We developed a heritable and efficient Agrobacterium- mediated transformation using protocorms derived from tetraploid or diploid Phal. orchids. A T-DNA vector construct containing eGFP driven by ubiquitin promoter was subjected to transformation. An approximate 1.2-5.2 % transformation rate was achieved. Genomic PCR confirmed that hygromycin selection marker, HptII gene and target gene eGFP were integrated into the orchid genome. Southern blotting indicated a low T-DNA insertion number in the orchid genome of the transformants. Western blot confirmed the expression of eGFP protein in the transgenic orchids. Furthermore, the GFP signal was detected in the transgenic orchids under microscopy. After backcrossing the pollinia of the transgenic plants to four different Phal. orchid varieties, the BC1 progenies showed hygromycin resistance and all surviving BC1 seedlings were HptII positive in PCR and expressed GFP protein as shown by western blot. CONCLUSIONS: This study demonstrated a stable transformation system was generated for Phal. orchids. This useful transformation protocol enables functional genomics studies and molecular breeding.

8.
Bioresour Technol ; 101(4): 1310-7, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19837582

RESUMO

A high yield of beta-glucosidase (EC 3.2.1.21) of 159.1 U/g-solid activity on 4-nitrophenyl beta-d-glucopyranoside (pNPG) was achieved by rice bran-based solid-state fermentation (SSF) of the recently characterized fungus Penicillium citrinum YS40-5. The enzyme was both thermophilic and acidophilic at the optimized temperature and pH of 70 degrees C and 5.0, respectively. Over 95% of the original beta-glucosidase activity was maintained after a prolonged storage at ambient temperature for 4 weeks. The kinetic parameters V(max), K(m) and K(I) were 85.93 U/mg, 1.2 mM and 17.59 mM with pNPG, and 72.49 U/mg, 32.17 mM and 8.29 mM with cellobiose, respectively. The protein band with beta-glucosidase activity was characterized by native PAGE followed by MUG-zymogram analysis, and its identity confirmed by nanoLC-MS/MS. A 3.43-fold synergistic effect by combining this beta-glucosidase with Trichoderma reesei cellulases was observed, indicating this enzyme could potentially be used for improving the efficiency of cellulosic bioconversion.


Assuntos
Biotecnologia/métodos , Fermentação/fisiologia , Oryza/metabolismo , Penicillium/enzimologia , Temperatura , beta-Glucosidase/biossíntese , Sequência de Aminoácidos , Carbono/farmacologia , Celulose/metabolismo , DNA Ribossômico/genética , Estabilidade Enzimática/efeitos dos fármacos , Fermentação/efeitos dos fármacos , Glucosídeos/metabolismo , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Himecromona/análogos & derivados , Himecromona/metabolismo , Íons , Cinética , Espectrometria de Massas , Metais/farmacologia , Dados de Sequência Molecular , Nitrogênio/farmacologia , Penicillium/efeitos dos fármacos , Penicillium/genética , Filogenia , Trichoderma/efeitos dos fármacos , Trichoderma/enzimologia , beta-Glucosidase/química
9.
Plant Mol Biol ; 65(4): 417-25, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17922261

RESUMO

Promoters play key roles in conferring temporal, spatial, chemical, developmental, or environmental regulation of gene expression. Promoters that are subject to specific regulations are useful for manipulating foreign gene expression in plant cells, tissues, or organs with desirable patterns and under controlled conditions, and have been important for both basic research and applications in agriculture biotechnology. Recent advances in genomics technologies have greatly facilitated identification and study of promoters in a genome scale with high efficiency. Previously we have generated a large T-DNA tagged rice mutant library (TRIM), in which the T-DNA was designed with a gene/promoter trap system, by placing a promoter-less GUS gene next to the right border of T-DNA. GUS activity screens of this library offer in situ and in planta identifications and analyses of promoter activities in their native configurations in the rice genome. In the present study, we systematically performed GUS activity screens of the rice mutant library for genes/promoters constitutively, differentially, or specifically active in vegetative and reproductive tissues. More than 8,200 lines have been screened, and 11% and 22% of them displayed GUS staining in vegetative tissues and in flowers, respectively. Among the vegetative tissue active promoters, the ratio of leaf active versus root active is about 1.6. Interestingly, all the flower active promoters are anther active, but with varied activities in different flower tissues. To identify tissue specific ABA/stress up-regulated promoters, we compared microarray data of ABA/stress induced genes with those of tissue-specific expression determined by promoter trap GUS staining. Following this approach, we showed that the peroxidase 1 gene promoter was ABA up-regulated by 4 fold within 1 day of exposure to ABA and its expression is lateral root specific. We suggest that this be an easy bioinformatics approach in identifying tissue/cell type specific promoters that are up-regulated by hormones or other factors.


Assuntos
Genoma de Planta , Oryza/genética , Regiões Promotoras Genéticas , DNA Bacteriano , Glucuronidase/genética , Análise de Sequência com Séries de Oligonucleotídeos , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA