RESUMO
The interplay between immune cells/macrophages and fibroblast-like synoviocytes (FLSs) plays a pivotal role in initiating synovitis; however, their involvement in metabolic disorders, including diabetic osteoarthritis (DOA), is largely unknown. In this study, single-cell RNA sequencing (scRNA-seq) is employed to investigate the synovial cell composition of DOA. A significant enrichment of activated macrophages within eight distinct synovial cell clusters is found in DOA synovium. Moreover, it is demonstrated that increased glycolysis in FLSs is a key driver for DOA patients' synovial macrophage infiltration and polarization. In addition, the yes-associated protein 1 (YAP1)/thioredoxin-interacting protein (TXNIP) signaling axis is demonstrated to play a crucial role in regulating glucose transporter 1 (GLUT1)-dependent glycolysis in FLSs, thereby controlling the expression of a series of adhesion molecules such as intercellular adhesion molecule-1 (ICAM-1) which may subsequently fine-tune the infiltration of M1-polarized synovial macrophages in DOA patients and db/db diabetic OA mice. For treatment, M1 macrophage membrane-camouflaged Verteporfin (Vt)-loaded PLGA nanoparticles (MVPs) are developed to ameliorate DOA progression by regulating the YAP1/TXNIP signaling axis, thus suppressing the synovial glycolysis and the infiltration of M1-polarized macrophages. The results provide several novel insights into the pathogenesis of DOA and offer a promising treatment approach for DOA.
Assuntos
Diabetes Mellitus , Osteoartrite , Sinoviócitos , Humanos , Camundongos , Animais , Sinoviócitos/metabolismo , Sinoviócitos/patologia , Osteoartrite/metabolismo , Macrófagos/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Diabetes Mellitus/metabolismo , Fibroblastos/metabolismo , GlicóliseRESUMO
After spinal cord injury, the concentrations of total and hyperphosphorylated tau in cerebrospinal fluid increase, and levels of both correlate with injury severity. Tau inhibition is considered effective therapy for many central nervous system diseases, including traumatic brain injury and Alzheimer's disease. However, whether it can play a role in the treatment of spinal cord injury remains unclear. In this study, the therapeutic effects of tau inhibition were investigated in a rat model of transection spinal cord injury by injecting the rats with a lentivirus encoding tau siRNA that inhibits tau expression. We found that tau inhibition after spinal cord injury down-regulated the levels of inflammatory mediators, including tumor necrosis factor-α, interleukin-6 and interleukin-1ß. It also led to a shift of activated microglial polarization from the M1 pro-inflammatory phenotype to the M2 anti-inflammatory phenotype, and reduced the amount of reactive oxygen species in the acute phase. Furthermore, the survival of residual neural cells around the injury epicenter, and neuronal and axonal regeneration were also markedly enhanced, which promoted locomotor recovery in the model rats. Collectively, our findings support the conclusion that tau inhibition can attenuate neuroinflammation, alleviate oxidative stress, protect residual cells, facilitate neurogenesis, and improve the functional recovery after spinal cord injury, and thus suggest that tau could be a good molecular target for spinal cord injury therapy.
RESUMO
Osteosarcoma (OS) is the most common primary malignant bone tumor in children and adolescents, which is characterized by dysfunctional autophagy and poor differentiation. Our recent studies have suggested that the tripartite motif containing-21 (TRIM21) plays a crucial role in regulating OS cell senescence and proliferation via interactions with several proteins. Yet, its implication in autophagy and differentiation in OS is largely unknown. In the present study, we first showed that TRIM21 could promote OS cell autophagy, as determined by the accumulation of LC3-II, and the degradation of cargo receptor p62. Further, we were able to identify that Annexin A2 (ANXA2), as a novel interacting partner of TRIM21, was critical for TIRM21-induced OS cell autophagy. Although TRIM21 had a negligible effect on the mRNA and protein expressions of ANXA2, we did find that TRIM21 facilitated the translocation of ANXA2 toward plasma membrane (PM) in OS cells through a manner relying on TRIM21-mediated cell autophagy. This functional link has been confirmed by observing a nice co-expression of TRIM21 and ANXA2 (at the PM) in the OS tissues. Mechanistically, we demonstrated that TRIM21, via facilitating the ANXA2 trafficking at the PM, enabled to release the transcription factor EB (TFEB, a master regulator of autophagy) from the ANXA2-TFEB complex, which in turn entered into the nucleus for the regulation of OS cell autophagy. In accord with previous findings that autophagy plays a critical role in the control of differentiation, we also demonstrated that autophagy inhibited OS cell differentiation, and that the TRIM21/ANXA2/TFEB axis is implicated in OS cell differentiation through the coordination with autophagy. Taken together, our results suggest that the TRIM21/ANXA2/TFEB axis is involved in OS cell autophagy and subsequent differentiation, indicating that targeting this signaling axis might lead to a new clue for OS treatment.
Assuntos
Oncogenes/genética , Osteossarcoma/genética , Ribonucleoproteínas/metabolismo , Anexina A2/metabolismo , Autofagia , Diferenciação Celular , Linhagem Celular Tumoral , Humanos , Transdução de SinaisRESUMO
Chondrosarcoma (CHS) is the second most common bone malignancy with limited therapeutic approaches. Our previous study has found that Yes associated protein 1 (YAP1) is downregulated in CHS cells treated with bromodomain and extraterminal domain (BET) inhibitor JQ1. However, the precise role of YAP1 in CHS is largely unknown. Herein, we found that YAP1 expression was upregulated in CHS tissues, and positively correlated with its grading score. Loss of YAP1 inhibited CHS proliferation and induced cellular senescence, while expression of YAP1 mutants revealed YAP1/TEA domain family member (TEAD)-dependent negative regulation of p21 and subsequent cellular senescence. These results were validated by in vivo experiments using stable shYAP1 cell lines. Mechanistically, negative regulation of p21 by YAP1 occurred post-transcriptionally via Dicer-regulated miRNA networks, specifically, the miR-17 family. Furthermore, we demonstrated that sequential targeting of YAP1 and p21 enhanced the elimination of JQ1-induced senescent cells in a Bcl-2-like 1 (Bcl-XL)/Caspase-3 dependent manner. Altogether, we unveil a novel role of YAP1 signaling in mediating CHS cell senescence and propose a one-two punch approach that sequentially targets the YAP1/p21 axis to eliminate senescent cells.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Azepinas/farmacologia , Neoplasias Ósseas/tratamento farmacológico , Condrossarcoma/tratamento farmacológico , Inibidor de Quinase Dependente de Ciclina p21/antagonistas & inibidores , Fatores de Transcrição/antagonistas & inibidores , Triazóis/farmacologia , Proteínas rho de Ligação ao GTP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Condrossarcoma/genética , Condrossarcoma/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Terapia de Alvo Molecular , Proteínas/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas de Sinalização YAPRESUMO
Creating a microenvironment with low inflammation and favorable for the chondrogenic differentiation of endogenous stem cells plays an essential role in cartilage repairing. In the present study, we design a novel ginsenoside Rb1/TGF-ß1 loaded silk fibroin-gelatin porous scaffold (GSTR) with the function of attenuating inflammation and promoting chondrogenesis. The scaffold has porous microstructure, proper mechanical strength, degradation rate and sustained release of Rb1 and TGF-ß1. Rat bone marrow-derived mesenchymal stem cells (rBMSCs) seeded into GSTR scaffolds are homogeneously distributed and display a higher proliferation rate than non-loaded scaffolds (GS). GSTR scaffolds promote the chondrogenic differentiation of rBMSCs and suppress the expression of inflammation genes. Under the stimulation of IL-1ß, the inflammation level of the chondrocytes seeded in GSTR scaffolds is also significantly down-regulated. Moreover, GSTR scaffolds implanted into the osteochondral defects in rats effectively promote the regeneration of hyaline cartilage 12 weeks after surgery when compared with other groups. It is demonstrated that this scaffold loaded with Rb1 and TGF-ß1 can synergistically create a microenvironment favorable for cartilage regeneration by promoting the chondrogenesis and suppressing the inflammation levels in vivo. These results prove it has a great potential to develop this Rb1/TGF-ß1 releasing scaffold into a novel and promising therapeutic for cartilage repair.
Assuntos
Cartilagem/fisiologia , Fibroínas/química , Gelatina/química , Ginsenosídeos/química , Regeneração , Alicerces Teciduais/química , Fator de Crescimento Transformador beta1/química , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/uso terapêutico , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Condrogênese/efeitos dos fármacos , Força Compressiva , Interleucina-1beta/metabolismo , Artropatias/patologia , Artropatias/terapia , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Porosidade , Ratos , Ratos Sprague-Dawley , Regeneração/efeitos dos fármacosRESUMO
Osteosarcoma (OS) is the most common bone malignancy in adolescents and has poor clinical outcomes. Protein arginine methyltransferase 5 (PRMT5) has recently been shown to be aberrantly expressed in various cancers, yet its role in OS remains elusive. Here, we found that PRMT5 was overexpressed in OS and its overexpression predicted poor clinical outcomes. PRMT5 knockdown significantly triggered pronounced senescence in OS cells, as evidenced by the increase in senescence-associated ß-galactosidase (SA-ß-gal)-stained cells, induction of p21 expression, and upregulation of senescence-associated secretory phenotype (SASP) gene expression. In addition, we found that PRMT5 plays a key role in regulating DNA damaging agents-induced OS cell senescence, possibly, via affecting the repair of DNA damage. Furthermore, we found that TXNIP acts as a key factor mediating PRMT5 depletion-induced DNA damage and cellular senescence. Mechanistically, TRIM21, which interacts with PRMT5, was essential for the regulation of TXNIP/p21 expression. In summary, we propose a model in which PRMT5, by interaction with TRIM21, plays a key role in regulating the TXNIP/p21 axis during senescence in OS cells. The present findings suggest that PRMT5 overexpression in OS cells might confer resistance to chemotherapy and that targeting the PRMT5/TRIM21/TXNIP signaling may enhance the therapeutic efficacy in OS.