Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
J Cell Sci ; 136(4)2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36789796

RESUMO

Jaw1 (also known as IRAG2), a tail-anchored protein with 39 carboxyl (C)-terminal amino acids, is oriented to the lumen of the endoplasmic reticulum and outer nuclear membrane. We previously reported that Jaw1, as a member of the KASH protein family, plays a role in maintaining nuclear shape via its C-terminal region. Furthermore, we recently reported that Jaw1 functions as an augmentative effector of Ca2+ release from the endoplasmic reticulum by interacting with the inositol 1,4,5-trisphosphate receptors (IP3Rs). Intriguingly, the C-terminal region is partially cleaved, meaning that Jaw1 exists in the cell in at least two forms - uncleaved and cleaved. However, the mechanism of the cleavage event and its physiological significance remain to be determined. In this study, we demonstrate that the C-terminal region of Jaw1 is cleaved after its insertion by the signal peptidase complex (SPC). Particularly, our results indicate that the SPC with the catalytic subunit SEC11A, but not SEC11C, specifically cleaves Jaw1. Furthermore, using a mutant with a defect in the cleavage event, we demonstrate that the cleavage event enhances the augmentative effect of Jaw1 on the Ca2+ release ability of IP3Rs.


Assuntos
Sinalização do Cálcio , Cálcio , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Retículo Endoplasmático/metabolismo , Núcleo Celular/metabolismo , Inositol 1,4,5-Trifosfato/metabolismo
2.
J Biol Chem ; 299(7): 104885, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37269952

RESUMO

Dextran is an α-(1→6)-glucan that is synthesized by some lactic acid bacteria, and branched dextran with α-(1→2)-, α-(1→3)-, and α-(1→4)-linkages are often produced. Although many dextranases are known to act on the α-(1→6)-linkage of dextran, few studies have functionally analyzed the proteins involved in degrading branched dextran. The mechanism by which bacteria utilize branched dextran is unknown. Earlier, we identified dextranase (FjDex31A) and kojibiose hydrolase (FjGH65A) in the dextran utilization locus (FjDexUL) of a soil Bacteroidota Flavobacterium johnsoniae and hypothesized that FjDexUL is involved in the degradation of α-(1→2)-branched dextran. In this study, we demonstrate that FjDexUL proteins recognize and degrade α-(1→2)- and α-(1→3)-branched dextrans produced by Leuconostoc citreum S-32 (S-32 α-glucan). The FjDexUL genes were significantly upregulated when S-32 α-glucan was the carbon source compared with α-glucooligosaccharides and α-glucans, such as linear dextran and branched α-glucan from L. citreum S-64. FjDexUL glycoside hydrolases synergistically degraded S-32 α-glucan. The crystal structure of FjGH66 shows that some sugar-binding subsites can accommodate α-(1→2)- and α-(1→3)-branches. The structure of FjGH65A in complex with isomaltose supports that FjGH65A acts on α-(1→2)-glucosyl isomaltooligosaccharides. Furthermore, two cell surface sugar-binding proteins (FjDusD and FjDusE) were characterized, and FjDusD showed an affinity for isomaltooligosaccharides and FjDusE for dextran, including linear and branched dextrans. Collectively, FjDexUL proteins are suggested to be involved in the degradation of α-(1→2)- and α-(1→3)-branched dextrans. Our results will be helpful in understanding the bacterial nutrient requirements and symbiotic relationships between bacteria at the molecular level.


Assuntos
Dextranos , Flavobacterium , Lactobacillales , Polissacarídeos Bacterianos , Dextranos/metabolismo , Glucanos/metabolismo , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Lactobacillales/metabolismo , Flavobacterium/metabolismo , Polissacarídeos Bacterianos/metabolismo
3.
Proteins ; 92(8): 984-997, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38641972

RESUMO

Glycoside hydrolase (GH) family 13 is among the main families of enzymes acting on starch; recently, subfamily 47 of GH13 (GH13_47) has been established. The crystal structure and function of a GH13_47 enzyme from Bacteroides ovatus has only been reported to date. This enzyme has α-amylase activity, while the GH13_47 enzymes comprise approximately 800-900 amino acid residues which are almost double those of typical α-amylases. It is important to know how different the GH13_47 enzymes are from other α-amylases. Rhodothermus marinus JCM9785, a thermophilic bacterium, possesses a gene for the GH13_47 enzyme, which is designated here as RmGH13_47A. Its structure has been predicted to be composed of seven domains: N1, N2, N3, A, B, C, and D. We constructed a plasmid encoding Gly266-Glu886, which contains the N3, A, B, and C domains and expressed the protein in Escherichia coli. The enzyme hydrolyzed starch and pullulan by a neopullulanase-type action. Additionally, the enzyme acted on maltotetraose, and saccharides with α-1,6-glucosidic linkages were observed in the products. Following the replacement of the catalytic residue Asp563 with Ala, the crystal structure of the variant D563A in complex with the enzymatic products from maltotetraose was determined; as a result, electron density for an α-1,6-branched pentasaccharide was observed in the catalytic pocket, and Ile762 and Asp763 interacted with the branched chain of the pentasaccharide. These findings suggest that RmGH13_47A is an α-amylase that prefers α-1,6-branched parts of starch to produce oligosaccharides.


Assuntos
Proteínas de Bactérias , Modelos Moleculares , Rhodothermus , alfa-Amilases , Rhodothermus/enzimologia , Rhodothermus/genética , alfa-Amilases/química , alfa-Amilases/metabolismo , alfa-Amilases/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Glucanos/metabolismo , Glucanos/química , Especificidade por Substrato , Amido/metabolismo , Amido/química , Sequência de Aminoácidos , Oligossacarídeos/metabolismo , Oligossacarídeos/química , Domínio Catalítico , Ligação Proteica , Escherichia coli/genética , Escherichia coli/metabolismo , Hidrólise , Domínios e Motivos de Interação entre Proteínas , Cristalografia por Raios X , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Clonagem Molecular , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Glicosídeo Hidrolases/genética , Sítios de Ligação , Conformação Proteica em alfa-Hélice , Maltose/análogos & derivados
4.
Biochem Biophys Res Commun ; 733: 150689, 2024 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-39276694

RESUMO

Staphylococcus aureus exfoliative toxins (ETs) are serine proteases responsible for staphylococcal scalded skin syndrome. Four ETs, ETA, ETB, ETD, and ETE, have been identified, all of which cleave desmoglein-1. This study presents the crystal structure of ETD at 1.75 Å resolution. The protein exhibits a structure composed of two ß-barrels and two α-helices as described in previous studies of ETs. A predicted model of ETD in complex with Ile380-Glu381-Gly382-Pro383 (IEGP), a segment of human desmoglein-1 (hDsg1), was constructed. Glu381 of hDsg1 was predicted to interact with as many as six amino acid residues in ETD, whereas two amino acid residues in ETD primarily constituted subsite S1', and a space near subsite S1' was noted. It is likely that polypeptide chains located near the IEGP segment in the predicted structure of hDsg1 bind to this space. The structure of loop D, which was predicted to participate in subsite S2', in ETD was markedly different from those in other ETs.


Assuntos
Exfoliatinas , Modelos Moleculares , Staphylococcus aureus , Staphylococcus aureus/química , Staphylococcus aureus/enzimologia , Staphylococcus aureus/metabolismo , Cristalografia por Raios X , Exfoliatinas/química , Exfoliatinas/metabolismo , Sequência de Aminoácidos , Humanos , Conformação Proteica
5.
Biosci Biotechnol Biochem ; 87(9): 981-990, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37280168

RESUMO

The trisaccharide 1-kestose, a major constituent of fructooligosaccharide, has strong prebiotic effects. We used high-performance liquid chromatography and 1H nuclear magnetic resonance spectroscopy to show that BiBftA, a ß-fructosyltransferase belonging to glycoside hydrolase family 68, from Beijerinckia indica subsp. indica catalyzes transfructosylation of sucrose to produce mostly 1-kestose and levan polysaccharides. We substituted His395 and Phe473 in BiBftA with Arg and Tyr, respectively, and analyzed the reactions of the mutant enzymes with 180 g/L sucrose. The ratio of the molar concentrations of glucose and 1-kestose in the reaction mixture with wild-type BiBftA was 100:8.1, whereas that in the reaction mixture with the variant H395R/F473Y was 100:45.5, indicating that H395R/F473Y predominantly accumulated 1-kestose from sucrose. The X-ray crystal structure of H395R/F473Y suggests that its catalytic pocket is unfavorable for binding of sucrose while favorable for transfructosylation.


Assuntos
Proteínas de Bactérias , Hexosiltransferases , Hexosiltransferases/genética , Hexosiltransferases/metabolismo , Sacarose/metabolismo
6.
J Struct Biol ; 214(3): 107874, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35688347

RESUMO

An α-glucosidase from Aspergillus sojae, AsojAgdL, exhibits strong transglucosylation activity to produce α-1,6-glucosidic linkages. The most remarkable structural feature of AsojAgdL is that residues 457-560 of AsojAgdL (designated the NC sequence) is not conserved in other glycoside hydrolase family 31 enzymes, and part of this NC sequence is proteolytically cleaved during its maturation. In this study, the enzyme was expressed in Pichia pastoris, and electrophoretic analysis indicated that the recombinant enzyme, rAsojAgdL, consisted of two polypeptide chains, as observed in the case of the enzyme produced in an Aspergillus strain. The crystal structure of rAsojAgdL was determined in complex with the substrate analog trehalose. Electron density corresponding to residues 496-515 of the NC sequence was not seen, and there were no α-helices or ß-strands except for a short α-helix in the structures of residues 457-495 and residues 516-560, both of which belong to the NC sequence. The residues 457-495 and the residues 516-560 both formed extra components of the catalytic domain. The residues 457-495 constituted the entrance of the catalytic pocket of rAsojAgdL, and Gly467, Asp468, Pro469, and Pro470 in the NC sequence were located within 4 Å of Trp400, a key residue involved in binding of the substrate. The results suggest that the proteolytic processing of the NC sequence is related to the formation of the catalytic pocket of AsojAgdL.


Assuntos
Aspergillus , alfa-Glucosidases , Aspergillus/genética , Aspergillus/metabolismo , Domínio Catalítico , Especificidade por Substrato , alfa-Glucosidases/química , alfa-Glucosidases/genética , alfa-Glucosidases/metabolismo
7.
J Neurochem ; 163(6): 461-477, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36156798

RESUMO

The nodes of Ranvier are unmyelinated gaps in the axon, important for the efficient transmission of action potentials. Despite the identification of several glycoproteins involved in node formation and maintenance, glycans' structure and formation in the node remain unclear. Previously, we developed a recombinant lectin from the Clostridium botulinum neurotoxin complex, specific to the galactose and N-acetylgalactosamine terminal epitopes (Gg). Gg stained Neuro2a cells. Here, we show Gg punctuate staining in mouse brain cryosections. Thus, we hypothesized that Gg could help study glycans in the node of Ranvier. Lectin histochemistry on mouse brain cryosections confirmed that Gg binds specifically to the node of Ranvier in the central nervous system (CNS). Using a combination of lectin blotting, glycosidase treatment on tissue sections, and lectin histochemistry, Gg ligands were identified as α-galactose terminal glycoproteins in the perinodal extracellular matrix. Furthermore, we detected the spatiotemporal distribution of galactosylated glycans in the CNS node of Ranvier in mouse brain tissues at different postnatal times. Finally, we observed impaired clustering of galactosylated glycans in the nodes during demyelination and remyelination in cuprizone-induced demyelination and remyelination mouse model. In conclusion, Gg can serve as a novel brain imaging tool in glycobiology and report glycoprotein formation and alterations in the CNS node of Ranvier. Our findings might serve as a first step to establish the role of glycans in the node of Ranvier.


Assuntos
Doenças Desmielinizantes , Lectinas , Nós Neurofibrosos , Animais , Camundongos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Sistema Nervoso Central/diagnóstico por imagem , Sistema Nervoso Central/metabolismo , Doenças Desmielinizantes/metabolismo , Galactose/metabolismo , Glicoproteínas/metabolismo , Lectinas/química , Neuroimagem , Polissacarídeos/química , Polissacarídeos/metabolismo , Nós Neurofibrosos/metabolismo
8.
Appl Microbiol Biotechnol ; 106(7): 2455-2470, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35267055

RESUMO

Fructooligosaccharide is a mixture of mostly the trisaccharide 1-kestose (GF2), tetrasaccharide nystose (GF3), and fructosyl nystose (GF4). Enzymes that hydrolyze GF3 may be useful for preparing GF2 from the fructooligosaccharide mixture. A ß-fructofuranosidase belonging to glycoside hydrolase family 32 (GH32) from the honeybee gut bacterium Frischella perrara (FperFFase) was expressed in Escherichia coli and purified. The time course of the hydrolysis of 60 mM sucrose, GF2, and GF3 by FperFFase was analyzed, showing that the hydrolytic activity of FperFFase for trisaccharide GF2 was lower than those for disaccharide sucrose and tetrasaccharide GF3. The crystal structure of FperFFase and its structure in complex with fructose were determined. FperFFase was found to be structurally homologous to bifidobacterial ß-fructofuranosidases even though bifidobacterial enzymes preferably hydrolyze GF2 and the amino acid residues interacting with fructose at subsite - 1 are mostly conserved between them. A proline residue was inserted between Asp298 and Ser299 using site-directed mutagenesis, and the activity of the variant 298P299 was measured. The ratio of activities for 60 mM GF2/GF3 by wild-type FperFFase was 35.5%, while that of 298P299 was 23.6%, indicating that the structure of the loop comprising Trp297-Asp298-Ser299 correlated with the substrate preference of FperFFase. The crystal structure also shows that a loop consisting of residues 117-127 is likely to contribute to the substrate binding of FperFFase. The results obtained herein suggest that FperFFase is potentially useful for the manufacture of GF2. KEY POINTS: • Frischella ß-fructofuranosidase hydrolyzed nystose more efficiently than 1-kestose. • Trp297-Asp298-Ser299 was shown to be correlated with the substrate preference. • Loop consisting of residues 117-127 appears to contribute to the substrate binding.


Assuntos
Oligossacarídeos , beta-Frutofuranosidase , Animais , Abelhas , Frutose , Gammaproteobacteria , Oligossacarídeos/metabolismo , Sacarose , Trissacarídeos/metabolismo , beta-Frutofuranosidase/metabolismo
9.
Biosci Biotechnol Biochem ; 85(7): 1706-1710, 2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34014266

RESUMO

We constructed enzyme variants of the α-glucosidases from Aspergillus oryzae (AoryAgdS) and Aspergillus sojae (AsojAgdL) by mutating the amino acid residue at position 450. AoryAgdS_H450R acquired the ability to produce considerable amounts of α-1,6-transglucosylation products, whereas AsojAgdL_R450H changed to produce more α-1,3- and α-1,4-transglucosylation products than α-1,6-products. The 450th amino acid residue is critical for the transglucosylation of these α-glucosidases.


Assuntos
Substituição de Aminoácidos , Aspergillus oryzae/enzimologia , Aspergillus/enzimologia , alfa-Glucosidases/metabolismo , Sequência de Aminoácidos , Glicosilação , Homologia de Sequência de Aminoácidos , alfa-Glucosidases/química
10.
Biosci Biotechnol Biochem ; 84(12): 2508-2520, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32752982

RESUMO

An enzyme belonging to glycoside hydrolase family 68 (GH68) from Beijerinckia indica subsp. indica NBRC 3744 was expressed in Escherichia coli. Biochemical characterization showed that the enzyme was identified to be a ß-fructosyltransferase (BiBftA). Crystallization of a full-length BiBftA was initially attempted, but no crystals were obtained. We constructed a variant in which 5 residues (Pro199-Gly203) and 13 residues (Leu522-Gln534) in potentially flexible regions were deleted, and we successfully crystallized this variant BiBftA. BiBftA is composed of a five-bladed ß-propeller fold as in other GH68 enzymes. The structure of BiBftA in complex with fructose unexpectedly indicated that one ß-fructofuranose (ß-Fruf) molecule and one ß-fructopyranose molecule bind to the catalytic pocket. The orientation of ß-Fruf at subsite -1 is tilted from the orientation observed in most GH68 enzymes, presenting a second structure of a GH68 enzyme in complex with the tilted binding mode of ß-Fruf.


Assuntos
Beijerinckiaceae/enzimologia , Frutose/metabolismo , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Sequência de Aminoácidos , Cristalografia por Raios X , Glicosídeo Hidrolases/genética , Modelos Moleculares , Mutagênese , Conformação Proteica , Relação Estrutura-Atividade
11.
Biosci Biotechnol Biochem ; 82(9): 1599-1605, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29873621

RESUMO

1-Kestose is a key prebiotic fructooligosaccharide (FOS) sugar. Some ß-fructofuranosidases (FFases) have high transfructosylation activity, which is useful for manufacturing FOS. Therefore, obtaining FFases that produce 1-kestose efficiently is important. Here, we established a rapid FFase evaluation method using Escherichia coli that display different FFases fused to a PgsA anchor protein from Bacillus subtilis. E. coli cell suspensions expressing the PgsA-FFase fusion efficiently produce FOS from sucrose. Using this screening technique, we found that the E. coli transformant expressing Aspergillus kawachii FFase (AkFFase) produced a larger amount of 1-kestose than those expressing FFases from A. oryzae and A. terreus. Saturation mutagenesis of AkFFase was performed, and the mutant G85W was obtained. The E. coli transformant expressing AkFFase G85W markedly increased production of 1-kestose. Our results indicate that the surface display technique using PgsA is useful for screening of FFases, and AkFFase G85W is likely to be suitable for 1-kestose production. ABBREVIATIONS: AkFFase: Aspergillus kawachii FFase; AoFFase: Aspergillus oryzae FFase; AtFFase: Aspergillus terreus FFase; FFase: ß-fructofuranosidase; FOS: fructooligosaccharide; fructosylnystose: 1F-ß-fructofuranosylnystose.


Assuntos
Aspergillus/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Trissacarídeos/metabolismo , beta-Frutofuranosidase/biossíntese , Aspergillus/enzimologia , Escherichia coli/genética , Mutagênese , beta-Frutofuranosidase/genética , beta-Frutofuranosidase/metabolismo
12.
Biosci Biotechnol Biochem ; 81(9): 1786-1795, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28715279

RESUMO

ß-Fructofuranosidases belonging to glycoside hydrolase family (GH) 32 are enzymes that hydrolyze sucrose. Some GH32 enzymes also catalyze transfructosylation to produce fructooligosaccharides. We found that Aspergillus kawachii IFO 4308 ß-fructofuranosidase (AkFFase) produces fructooligosaccharides, mainly 1-kestose, from sucrose. We determined the crystal structure of AkFFase. AkFFase is composed of an N-terminal small component, a ß-propeller catalytic domain, an α-helical linker, and a C-terminal ß-sandwich, similar to other GH32 enzymes. AkFFase forms a dimer, and the dimerization pattern is different from those of other oligomeric GH32 enzymes. The complex structure of AkFFase with fructose unexpectedly showed that fructose binds both subsites -1 and +1, despite the fact that the catalytic residues were not mutated. Fructose at subsite +1 interacts with Ile146 and Glu296 of AkFFase via direct hydrogen bonds.


Assuntos
Aspergillus/enzimologia , Frutose/metabolismo , beta-Frutofuranosidase/química , beta-Frutofuranosidase/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Glicosilação , Modelos Moleculares
13.
J Struct Biol ; 196(3): 479-486, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27688023

RESUMO

Glycoside hydrolases are divided into two groups, known as inverting and retaining enzymes, based on their hydrolytic mechanisms. Glycoside hydrolase family 63 (GH63) is composed of inverting α-glycosidases, which act mainly on α-glucosides. We previously found that Escherichia coli GH63 enzyme, YgjK, can hydrolyze 2-O-α-d-glucosyl-d-galactose. Two constructed glycosynthase mutants, D324N and E727A, which catalyze the transfer of a ß-glucosyl fluoride donor to galactose, lactose, and melibiose. Here, we determined the crystal structures of D324N and E727A soaked with a mixture of glucose and lactose at 1.8- and 2.1-Å resolutions, respectively. Because glucose and lactose molecules are found at the active sites in both structures, it is possible that these structures mimic the enzyme-product complex of YgjK. A glucose molecule found at subsite -1 in both structures adopts an unusual 1S3 skew-boat conformation. Comparison between these structures and the previously determined enzyme-substrate complex structure reveals that the glucose pyranose ring might be distorted immediately after nucleophilic attack by a water molecule. These structures represent the first enzyme-product complex for the GH63 family, as well as the structurally-related glycosidases, and it may provide insight into the catalytic mechanism of these enzymes.


Assuntos
Proteínas de Escherichia coli/química , Glicosídeo Hidrolases/química , Proteínas Mutantes/química , N-Glicosil Hidrolases/química , Conformação Proteica , Sequência de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Escherichia coli/química , Proteínas de Escherichia coli/genética , Galactose/química , Glucose/química , Glicosídeo Hidrolases/genética , Lactose/química , Modelos Moleculares , N-Glicosil Hidrolases/genética , Especificidade por Substrato , Açúcares/química
14.
J Biol Chem ; 290(43): 26339-49, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26330557

RESUMO

Arthrobacter globiformis T6 isomalto-dextranase (AgIMD) is an enzyme that liberates isomaltose from the non-reducing end of a polymer of glucose, dextran. AgIMD is classified as a member of the glycoside hydrolase family (GH) 27, which comprises mainly α-galactosidases and α-N-acetylgalactosaminidases, whereas AgIMD does not show α-galactosidase or α-N-acetylgalactosaminidase activities. Here, we determined the crystal structure of AgIMD. AgIMD consists of the following three domains: A, C, and D. Domains A and C are identified as a (ß/α)8-barrel catalytic domain and an antiparallel ß-structure, respectively, both of which are commonly found in GH27 enzymes. However, domain A of AgIMD has subdomain B, loop-1, and loop-2, all of which are not found in GH27 human α-galactosidase. AgIMD in a complex with trisaccharide panose shows that Asp-207, a residue in loop-1, is involved in subsite +1. Kinetic parameters of the wild-type and mutant enzymes for the small synthetic saccharide p-nitrophenyl α-isomaltoside and the polysaccharide dextran were compared, showing that Asp-207 is important for the catalysis of dextran. Domain D is classified as carbohydrate-binding module (CBM) 35, and an isomaltose molecule is seen in this domain in the AgIMD-isomaltose complex. Domain D is highly homologous to CBM35 domains found in GH31 and GH66 enzymes. The results here indicate that some features found in GH13, -31, and -66 enzymes, such as subdomain B, residues at the subsite +1, and the CBM35 domain, are also observed in the GH27 enzyme AgIMD and thus provide insights into the evolutionary relationships among GH13, -27, -31, -36, and -66 enzymes.


Assuntos
Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/genética , Domínio Catalítico , Cristalografia por Raios X , Hidrólise , Conformação Proteica
15.
Biosci Biotechnol Biochem ; 80(8): 1562-7, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27170214

RESUMO

Glycoside hydrolase family (GH) 31 enzymes exhibit various substrate specificities, although the majority of members are α-glucosidases. Here, we constructed a heterologous expression system of a GH31 enzyme, Fjoh_4430, from Flavobacterium johnsoniae NBRC 14942, using Escherichia coli, and characterized its enzymatic properties. The enzyme hydrolyzed dextran and pullulan to produce isomaltooligosaccharides and isopanose, respectively. When isomaltose was used as a substrate, the enzyme catalyzed disproportionation to form isomaltooligosaccharides. The enzyme also acted, albeit inefficiently, on p-nitrophenyl α-D-glucopyranoside, and p-nitrophenyl α-isomaltoside was the main product of the reaction. In contrast, Fjoh_4430 did not act on trehalose, kojibiose, nigerose, maltose, maltotriose, or soluble starch. The optimal pH and temperature were pH 6.0 and 60 °C, respectively. Our results indicate that Fjoh_4430 is a novel GH31 dextranase with high transglucosylation activity.


Assuntos
Proteínas de Bactérias/metabolismo , Dextranase/metabolismo , Dextranos/metabolismo , Escherichia coli/enzimologia , Flavobacterium/enzimologia , Glucosiltransferases/metabolismo , Proteínas de Bactérias/genética , Dextranase/genética , Dextranos/química , Escherichia coli/genética , Flavobacterium/genética , Glucanos/química , Glucanos/metabolismo , Glucosiltransferases/genética , Concentração de Íons de Hidrogênio , Hidrólise , Isomaltose/química , Isomaltose/metabolismo , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Engenharia de Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Temperatura
16.
Biochem J ; 469(1): 145-58, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25942325

RESUMO

Glycoside hydrolase family 31 (GH31) proteins have been reportedly identified as exo-α-glycosidases with activity for α-glucosides and α-xylosides. We focused on a GH31 subfamily, which contains proteins with low sequence identity (<24%) to the previously reported GH31 glycosidases and characterized two enzymes from Pedobacter heparinus and Pedobacter saltans. The enzymes unexpectedly exhibited α-galactosidase activity, but were not active on α-glucosides and α-xylosides. The crystal structures of one of the enzymes, PsGal31A, in unliganded form and in complexes with D-galactose or L-fucose and the catalytic nucleophile mutant in unliganded form and in complex with p-nitrophenyl-α-D-galactopyranoside, were determined at 1.85-2.30 Å (1 Å=0.1 nm) resolution. The overall structure of PsGal31A contains four domains and the catalytic domain adopts a (ß/α)8-barrel fold that resembles the structures of other GH31 enzymes. Two catalytic aspartic acid residues are structurally conserved in the enzymes, whereas most residues forming the active site differ from those of GH31 α-glucosidases and α-xylosidases. PsGal31A forms a dimer via a unique loop that is not conserved in other reported GH31 enzymes; this loop is involved in its aglycone specificity and in binding L-fucose. Considering potential genes for α-L-fucosidases and carbohydrate-related proteins within the vicinity of Pedobacter Gal31, the identified Gal31 enzymes are likely to function in a novel sugar degradation system. This is the first report of α-galactosidases which belong to GH31 family.


Assuntos
Proteínas de Bactérias/química , Glicosídeo Hidrolases/química , Pedobacter/enzimologia , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Glicosídeo Hidrolases/metabolismo , Estrutura Secundária de Proteína , Especificidade por Substrato
17.
J Struct Biol ; 190(1): 21-30, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25712767

RESUMO

Glycoside hydrolase family 63 (GH63) proteins are found in eukaryotes such as processing α-glucosidase I and also many bacteria and archaea. Recent studies have identified two bacterial and one plant GH63 mannosylglycerate hydrolases that act on both glucosylglycerate and mannosylglycerate, which are compatible solutes found in many thermophilic prokaryotes and some plants. Here we report the 1.67-Å crystal structure of one of these GH63 mannosylglycerate hydrolases, Tt8MGH from Thermus thermophilus HB8, which is 99% homologous to mannosylglycerate hydrolase from T. thermophilus HB27. Tt8MGH consists of a single (α/α)6-barrel catalytic domain with two additional helices and two long loops which form a homotrimer. The structures of this protein in complexes with glucose or glycerate were also determined at 1.77- or 2.10-Å resolution, respectively. A comparison of these structures revealed that the conformations of three flexible loops were largely different from each other. The conformational changes may be induced by ligand binding and serve to form finger-like structures for holding substrates. These findings represent the first-ever proposed substrate recognition mechanism for GH63 mannosylglycerate hydrolase.


Assuntos
Proteínas de Bactérias/química , Glicosídeo Hidrolases/química , Thermus thermophilus/enzimologia , Sequência de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Ácidos Glicéricos/química , Ligação de Hidrogênio , Manose/análogos & derivados , Manose/química , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Alinhamento de Sequência , Homologia Estrutural de Proteína , Especificidade por Substrato
18.
Biosci Biotechnol Biochem ; 79(4): 625-32, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25483365

RESUMO

A deep-sea bacterium, Microbulbifer thermotolerans JAMB-A94, has a ß-agarase (MtAgaA) belonging to the glycoside hydrolase family (GH) 16. The optimal temperature of this bacterium for growth is 43-49 °C, and MtAgaA is stable at 60 °C, which is one of the most thermostable enzymes among GH16 ß-agarases. Here, we determined the catalytic domain structure of MtAgaA. MtAgaA consists of a ß-jelly roll fold, as observed in other GH16 enzymes. The structure of MtAgaA was most similar to two ß-agarases from Zobellia galactanivorans, ZgAgaA, and ZgAgaB. Although the catalytic cleft structure of MtAgaA was similar to ZgAgaA and ZgAgaB, residues at subsite -4 of MtAgaA were not conserved between them. Also, an α-helix, designated as α4', was uniquely located near the catalytic cleft of MtAgaA. A comparison of the structures of the three enzymes suggested that multiple factors, including increased numbers of arginine and proline residues, could contribute to the thermostability of MtAgaA.


Assuntos
Arginina/química , Proteínas de Bactérias/química , Gammaproteobacteria/química , Glicosídeo Hidrolases/química , Prolina/química , Sequência de Aminoácidos , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biocatálise , Domínio Catalítico , Cristalografia por Raios X , Estabilidade Enzimática , Flavobacteriaceae/química , Flavobacteriaceae/enzimologia , Gammaproteobacteria/enzimologia , Expressão Gênica , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Temperatura Alta , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência
19.
Appl Microbiol Biotechnol ; 98(15): 6667-77, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24633372

RESUMO

A ß-fructofuranosidase from Microbacterium saccharophilum K-1 (formerly known as Arthrobacter sp. K-1) is useful for producing the sweetener lactosucrose (4(G)-ß-D-galactosylsucrose). Thermostability of the ß-fructofuranosidase was enhanced by random mutagenesis and saturation mutagenesis. Clones with enhanced thermostability included mutations at residues Thr47, Ser200, Phe447, Phe470, and Pro500. In the highest stability mutant, T47S/S200T/F447P/F470Y/P500S, the half-life at 60 °C was 182 min, 16.5-fold longer than the wild-type enzyme. A comparison of the crystal structures of the full-length wild-type enzyme and three mutants showed that various mechanisms appear to be involved in thermostability enhancement. In particular, the replacement of Phe447 with Val or Pro induced a conformational change in an adjacent residue His477, which results in the formation of a new hydrogen bond in the enzyme. Although the thermostabilization mechanisms of the five residue mutations were explicable on the basis of the crystal structures, it appears to be difficult to predict which amino acid residues should be modified to obtain thermostabilized enzymes.


Assuntos
Actinomycetales/enzimologia , Proteínas de Bactérias/química , beta-Frutofuranosidase/química , Actinomycetales/química , Actinomycetales/genética , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Estabilidade Enzimática , Temperatura Alta , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Engenharia de Proteínas , beta-Frutofuranosidase/genética , beta-Frutofuranosidase/metabolismo
20.
J Biochem ; 173(5): 383-392, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-36689741

RESUMO

Jaw1/LRMP is a membrane protein that is localized to the endoplasmic reticulum and outer nuclear membrane. Previously, we revealed that Jaw1 functions to maintain nuclear shape by interacting with microtubules as a Klarsicht/ANC-1/Syne/homology (KASH) protein. The loss of several KASH proteins causes defects in the position and shape of the Golgi apparatus as well as the nucleus, but the effects of Jaw1 depletion on the Golgi apparatus were poorly understood. Here, we found that siRNA-mediated Jaw1 depletion causes Golgi fragmentation with disordered ribbon structure in the melanoma cell, accompanied by the change in the localization of the Golgi-derived microtubule network. Thus, we suggest that Jaw1 is a novel protein to maintain the Golgi ribbon structure, associated with the microtubule network.


Assuntos
Núcleo Celular , Complexo de Golgi , Membrana Nuclear , Núcleo Celular/metabolismo , Citoesqueleto/metabolismo , Complexo de Golgi/metabolismo , Microtúbulos , Membrana Nuclear/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA