RESUMO
Fusarium fujikuroi causes bakanae ("foolish seedling") disease of rice which is characterized by hyper-elongation of seedlings resulting from production of gibberellic acids (GAs) by the fungus. This plant pathogen is also known for production of harmful mycotoxins, such as fusarins, fusaric acid, apicidin F and beauvericin. Recently, we generated the first de novo genome sequence of F. fujikuroi strain IMI 58289 combined with extensive transcriptional, epigenetic, proteomic and chemical product analyses. GA production was shown to provide a selective advantage during infection of the preferred host plant rice. Here, we provide genome sequences of eight additional F. fujikuroi isolates from distant geographic regions. The isolates differ in the size of chromosomes, most likely due to variability of subtelomeric regions, the type of asexual spores (microconidia and/or macroconidia), and the number and expression of secondary metabolite gene clusters. Whilst most of the isolates caused the typical bakanae symptoms, one isolate, B14, caused stunting and early withering of infected seedlings. In contrast to the other isolates, B14 produced no GAs but high amounts of fumonisins during infection on rice. Furthermore, it differed from the other isolates by the presence of three additional polyketide synthase (PKS) genes (PKS40, PKS43, PKS51) and the absence of the F. fujikuroi-specific apicidin F (NRPS31) gene cluster. Analysis of additional field isolates confirmed the strong correlation between the pathotype (bakanae or stunting/withering), and the ability to produce either GAs or fumonisins. Deletion of the fumonisin and fusaric acid-specific PKS genes in B14 reduced the stunting/withering symptoms, whereas deletion of the PKS51 gene resulted in elevated symptom development. Phylogenetic analyses revealed two subclades of F. fujikuroi strains according to their pathotype and secondary metabolite profiles.
Assuntos
Fusarium/genética , Fusarium/patogenicidade , Oryza/microbiologia , Doenças das Plantas/microbiologia , Proteínas Fúngicas/biossíntese , Fusariose/genética , Fusarium/metabolismo , Genes Fúngicos/genética , Filogenia , VirulênciaRESUMO
An epidemic fungal disease caused by Fusarium proliferatum, responsible for fumonisin production (FB1, FB2, and FB3), has been reported in the main garlic-producing countries in recent years. Fumonisins are a group of structurally related toxic metabolites produced by this pathogen. The aim of this work was to establish an enzyme-linked immunosorbent assay (ELISA) procedure, mostly applied to cereals, that is suitable for fumonisin detection in garlic and compare these results to those obtained by high-performance liquid chromatography (HPLC) and screening of fresh and dehydrated garlic for toxicological risk. The results show good correlation between the two analytical methods. In fresh symptomatic garlic, fumonisin levels were higher in the basal plates than those in the portions with necrotic spots. Among the 56 commercially dehydrated garlic samples screened, three were positive by ELISA test and only one was above the limit of quantitation. The same samples analyzed by HPLC showed the presence of FB1 in trace amounts that was below the limit of quantitation; FB2 and FB3 were absent. The results are reassuring, because no substantial contamination by fumonisins was found in commercial garlic.