Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(5): 4118-4124, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38226667

RESUMO

Ion mobility spectrometry (IMS) separates and analyzes ions based on their mobility in a gas under an electric field. When the field is increased, the mobility varies in a complex way that depends on the relative velocity between gas and ion, their electrostatic potential interactions, and the effects from direct impingement. Recently, the two-temperature theory, primarily developed for monoatomic ions in monoatomic gases, has been extended to study mobilities at arbitrary fields using polyatomic ions in polyatomic gases, with some success. However, this extension poses challenges, such as inelastic collisions between gas and ion and structural modifications of ions as they heat up. These challenges become significant when working with diatomic gases and flexible molecules. In a previous study, experimental mobilities of tetraalkylammonium salts were obtained using a FAIMS instrument, showing satisfactory agreement with numerical two-temperature theory predictions. However, deviations occurred at fields greater than 100 Td. To address this issue, this paper introduces a modified high-field calculation method that accounts for the structural changes in ions due to field heating. The study focuses on tetraheptylammonium (THA+), tetradecylammonium (TDA+), and tetradodecylammonium (TDDA+) salts. Molecular structures were generated at various temperatures using MM2 forcefield. The mobility was calculated using IMoS 1.13 with two-temperature trajectory method calculations up to the fourth approximation. Multiple effective temperatures were considered, and a linear weighing system was used to create mobility vs. reduced field strength plots. The results suggest that the structural enlargement due to ion heating plays a significant role in mobility at high fields, aligning better with experimental data. FAIMS' dispersion plots also show improved agreement with experimental results. However, the contribution of inelastic collisions and energy transfer to rotational degrees of freedom in gas molecules remains a complex and challenging aspect.

2.
Cogn Neurodyn ; 18(4): 1419-1443, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39104673

RESUMO

Patients with locked-in syndrome (LIS) and complete locked-in syndrome (CLIS) own a fully functional brain restricted within a non-functional body. In order to help LIS patients stay connected with their surroundings, brain-computer interfaces (BCIs) and related technologies have emerged. BCIs translate brain activity into actions that can be performed by external devices enabling LIS patients to communicate, leading to an increase in their quality of life. The past decade has seen the rapid development of BCIs that have the potential to be used for patients with locked-in syndrome, from which a great deal is tested only on healthy subjects and not on actual patients. This study aims to (1) provide the readers with a comprehensive study that contributes to this growing area of research by exploring the performance of BCIs tested specifically on LIS and CLIS patients, (2) give an overview of different modalities and paradigms used in different stages of the locked-in syndrome, and (3) discuss the contributions and limitations of BCIs introduced for the LIS and CLIS patients in the state-of-the-art and lay a groundwork for researchers interested in this field.

3.
ISA Trans ; 120: 205-221, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33766451

RESUMO

This paper describes the design and implementation of intelligent dynamic models for fault detection and isolation of V94.2(5)/MGT-70(2) single-axis heavy-duty gas turbine system. The series-parallel structure of nonlinear autoregressive exogenous (NARX) models are used for fault detection, which initiate greater robustness and stability against uncertainties and perturbations. Moreover, to improve the fault detection robustness against uncertainties, the Monte Carlo technique is used in the proposed fault detection structure to select the best threshold. The analysis of fault detectability and fault detection sensitivity are accomplished to analyze the performance of the suggested technique. The fault isolation process is also achieved by using the residual classification approach. The results show the feasibly, robustness, and performance of the presented approach for fault diagnosis of nonlinear systems in the presence of uncertainties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA