Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Soft Matter ; 16(12): 2933-2940, 2020 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-32095804

RESUMO

A novel form of nematic gel (N-gel) wherein bright flower-like domains (BFDs) rich in gelator fibres are embedded in a matrix of liquid crystal (LC) molecules has been reported. These gels which we denote as inverse N-gels are unlike typical N-gels in which the LC is encapsulated within an aggregated network of gelator molecules. The self-organization of the helical gelator fibres within the BFDs leads to the creation of localized toron-like structures that are topologically protected due to their skyrmion director profile. Optical and confocal microscopy have been used to deduce the LC director configuration, in order to understand possible intermolecular interactions that can lead to the formation of the twisted structures and the inverse N-gels.

2.
Chemphyschem ; 19(12): 1471-1475, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29542850

RESUMO

Periodic orientation patterns occurring in nematic gels, revealed by optical and scanning electron microscopy, are found to be formed by spontaneous self-assembly of fibrous aggregates of a low-molecular-weight organogelator in an aligned thermotropic liquid crystal (LC). Self-organization into periodic structures is also reflected in a calorimetric study, which shows the occurrence of three thermoreversible states, namely, isotropic liquid, nematic and nematic gel. The segregation and self-assembly of the fibrous aggregates leading to pattern formation are attributed to the highly polar LC and to hydrogen bonding between gelator molecules, as shown by X-ray diffraction and vibrational spectroscopy. This study aims to investigate in detail the effect of the chemical nature and alignment of an anisotropic solvent on the morphology of the gelator fibres and the resulting gelation process. The periodic organization of LC-rich and fibre-rich regions can also provide a way to obtain templates for positioning nanoparticle arrays in an LC matrix, which can lead to novel devices.

3.
Chemphyschem ; 17(17): 2686-90, 2016 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-27214573

RESUMO

A series of newly synthesised rod-like polycatenar mesogens forms columnar phases, with the number of molecules in the column cross section depending on the core rigidity. For non-symmetric molecules, an additional density modulation, namely helical arrangement of molecules with a periodicity of approximately 10 molecular distances develops along the columns. For one of the compounds, a new type of columnar liquid crystal phase with 3D positional order is observed. Introducing a stilbene unit in the mesogenic core enhances the fluorescent properties of the compounds. In the hexagonal columnar phase, polarised light emission is observed.

4.
Angew Chem Int Ed Engl ; 55(10): 3468-72, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26833945

RESUMO

Bent-core materials exhibiting lamellar crystals (B4 phase), when dissolved in organic solvents, formed gels with helical ribbons made of molecular monolayers and bilayers, whereas strongly deformed stacks of 5-6 layers were found in the bulk samples. The width and pitch of the helical filaments were governed by molecular length; they both increased with terminal-chain elongation. It was also found that bulk samples were optically active, in contrast to the corresponding gels, which lacked optical activity. The optical activity of samples originated from the internal structure of the crystal layers rather than from the helicity of the filaments. A theoretical model predicts a strong increase in optical activity as the number of layers in the stack increases and its saturation for few layers, thus explaining the smaller optical activity for gels than for bulk samples. A strong increase and redshift in fluorescence was detected in gels as compared to the sol state.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA