Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Int J Mol Sci ; 25(2)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38255992

RESUMO

Diffraction-limited resolution and low penetration depth are fundamental constraints in optical microscopy and in vivo imaging. Recently, liquid-jet X-ray technology has enabled the generation of X-rays with high-power intensities in laboratory settings. By allowing the observation of cellular processes in their natural state, liquid-jet soft X-ray microscopy (SXM) can provide morphological information on living cells without staining. Furthermore, X-ray fluorescence imaging (XFI) permits the tracking of contrast agents in vivo with high elemental specificity, going beyond attenuation contrast. In this study, we established a methodology to investigate nanoparticle (NP) interactions in vitro and in vivo, solely based on X-ray imaging. We employed soft (0.5 keV) and hard (24 keV) X-rays for cellular studies and preclinical evaluations, respectively. Our results demonstrated the possibility of localizing NPs in the intracellular environment via SXM and evaluating their biodistribution with in vivo multiplexed XFI. We envisage that laboratory liquid-jet X-ray technology will significantly contribute to advancing our understanding of biological systems in the field of nanomedical research.


Assuntos
Microscopia , Imagem Óptica , Raios X , Distribuição Tecidual , Radiografia
2.
Environ Res ; 179(Pt A): 108788, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31590001

RESUMO

This work describes the fabrication of two composite nanofibers systems containing polyacrylonitrile polymer (PAN), Multiwall carbon nanotubes (MWCNT) and Titania (TiO2) nanoparticles. Photodegradation experiments were performed to study the effect of various parameters including pH, catalyst dose, pollutant concentration and reaction time for three model compounds, methylene blue (MB), indigo carmine (IC), and ibuprofen (IBU) under visible light. Morphology and structure of the modified composite nanofibers were characterized by X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Thermogravimetric analysis (TGA), Photoluminescence (PL) spectroscopy, Raman spectra, and X-ray Photoelectron Spectra (XPS) analyses. The photocatalytic performance was achieved in a rather short time visible light (<30 min) and under low power intensity (125 W) compared to earlier reports. Kinetics data fitted well using pseudo-first order model to describe the mechanism of photocatalytic degradation processes. The stability and flexibility of the fabricated composite nanofibers allow their application in a continuous flow system and their re-use after several cycles.


Assuntos
Resinas Acrílicas/química , Corantes/química , Nanofibras , Preparações Farmacêuticas/química , Catálise , Luz , Modelos Químicos , Nanotubos de Carbono , Processos Fotoquímicos , Fotólise , Titânio , Difração de Raios X
3.
Inorg Chem ; 55(4): 1831-6, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26836130

RESUMO

Low temperature thermoelectric (TE) materials are in demand for more efficient cooling and power generation applications. Iron antimonide (FeSb2) draws great attention over the past few years because of its enhanced power factor values. Polycrystalline bulk FeSb2 nanopowder was prepared via a low-temperature molten salts approach followed by subsequent thermal treatment in synthetic air and hydrogen gas for calcination and reduction reactions, respectively. Structural analysis confirms the desired final phase with submicrometer grain size and high compaction density after consolidation using spark plasma sintering (SPS). TE transport properties revealed that the material is n-type below 150 K and p-type above this temperature; this suggests antimony vacancies in FeSb2. The electrical conductivity increased significantly, and the highest conductivity achieved was 6000 S/cm at 100 K. The maximum figure-of-merit, ZT, of 0.04 is achieved at 500 K, which is about 6 times higher than the earlier reported state-of-the art ZT value for the same material.

4.
Biochem Biophys Res Commun ; 468(3): 498-503, 2015 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-26187673

RESUMO

Nanomaterials are small and the small size and corresponding large surface area of nanomaterials confers specific properties, making these materials desirable for various applications, not least in medicine. However, it is pertinent to ask whether size is the only property that matters for the desirable or detrimental effects of nanomaterials? Indeed, it is important to know not only what the material looks like, but also what it is made of, as well as how the material interacts with its biological surroundings. It has been suggested that guidelines should be implemented on the types of information required in terms of physicochemical characterization of nanomaterials for toxicological studies in order to improve the quality and relevance of the published results. This is certainly a key issue, but it is important to keep in mind that material characterization should be fit-for-purpose, that is, the information gathered should be relevant for the end-points being studied.


Assuntos
Bioensaio/métodos , Teste de Materiais/métodos , Nanopartículas/toxicidade , Testes de Toxicidade/métodos
5.
Biomater Adv ; 159: 213828, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38479240

RESUMO

Due to organ donor shortages, long transplant waitlists, and the complications/limitations associated with auto and allotransplantation, biomaterials and tissue-engineered models are gaining attention as feasible alternatives for replacing and reconstructing damaged organs and tissues. Among various tissue engineering applications, bone tissue engineering has become a promising strategy to replace or repair damaged bone. We aimed to provide an overview of bioactive ceramic scaffolds in bone tissue engineering, focusing on angiogenesis and the effect of different biofunctionalization strategies. Different routes to angiogenesis, including chemical induction through signaling molecules immobilized covalently or non-covalently, in situ secretion of angiogenic growth factors, and the degradation of inorganic scaffolds, are described. Physical induction mechanisms are also discussed, followed by a review of methods for fabricating bioactive ceramic scaffolds via microfabrication methods, such as photolithography and 3D printing. Finally, the strengths and weaknesses of the commonly used methodologies and future directions are discussed.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Angiogênese , Materiais Biocompatíveis , Cerâmica/uso terapêutico , Cerâmica/química
6.
Sci Adv ; 10(12): eadl2267, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38517973

RESUMO

Nanoparticles (NPs) are currently developed for drug delivery and molecular imaging. However, they often get intercepted before reaching their target, leading to low targeting efficacy and signal-to-noise ratio. They tend to accumulate in organs like lungs, liver, kidneys, and spleen. The remedy is to iteratively engineer NP surface properties and administration strategies, presently a time-consuming process that includes organ dissection at different time points. To improve this, we propose a rapid iterative approach using whole-animal x-ray fluorescence (XRF) imaging to systematically evaluate NP distribution in vivo. We applied this method to molybdenum-based NPs and clodronate liposomes for tumor targeting with transient macrophage depletion, leading to reduced accumulations in lungs and liver and eventual tumor detection. XRF computed tomography (XFCT) provided 3D insight into NP distribution within the tumor. We validated the results using a multiscale imaging approach with dye-doped NPs and gene expression analysis for nanotoxicological profiling. XRF imaging holds potential for advancing therapeutics and diagnostics in preclinical pharmacokinetic studies.


Assuntos
Nanopartículas , Neoplasias , Animais , Raios X , Fluorescência , Imagens de Fantasmas , Bioengenharia , Imagem Óptica
7.
Small ; 9(16): 2721-9, 2720, 2013 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-23447468

RESUMO

Eosinophil peroxidase (EPO) is one of the major oxidant-producing enzymes during inflammatory states in the human lung. The degradation of single-walled carbon nanotubes (SWCNTs) upon incubation with human EPO and H2O2 is reported. Biodegradation of SWCNTs is higher in the presence of NaBr, but neither EPO alone nor H2O2 alone caused the degradation of nanotubes. Molecular modeling reveals two binding sites for SWCNTs on EPO, one located at the proximal side (same side as the catalytic site) and the other on the distal side of EPO. The oxidized groups on SWCNTs in both cases are stabilized by electrostatic interactions with positively charged residues. Biodegradation of SWCNTs can also be executed in an ex vivo culture system using primary murine eosinophils stimulated to undergo degranulation. Biodegradation is proven by a range of methods including transmission electron microscopy, UV-visible-NIR spectroscopy, Raman spectroscopy, and confocal Raman imaging. Thus, human EPO (in vitro) and ex vivo activated eosinophils mediate biodegradation of SWCNTs: an observation that is relevant to pulmonary responses to these materials.


Assuntos
Nanotubos de Carbono/química , Animais , Biodegradação Ambiental , Peroxidase de Eosinófilo/metabolismo , Eosinófilos/metabolismo , Humanos , Camundongos
8.
Appl Opt ; 52(1): 105-9, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23292381

RESUMO

Spherical CdSe-CdS core-shell quantum dots (QDs) are found to be flexible in the transition between the type-I regime and the type-II regime with different core/shell dimensions. The quasi-type-II feature of the colloidal dots is confirmed with time-resolved photoluminescence (PL) measurements. Two recombination paths of the excitons with significantly different decay rates are observed and analyzed. The spherical CdSe-CdS core-shell QDs are numerically simulated to investigate the carrier separation. A relatively long radiative lifetime and high degree of spatial carrier separation provide good potential to achieve lasing under continuous-wave excitation. Amplified spontaneous emission at room temperature is detected from the QDs embedded in the polymer matrix. It is shown that a larger shell thickness results in a lower pumping threshold, while a smaller shell thickness leads to higher PL efficiency.

9.
ACS Appl Mater Interfaces ; 15(42): 49794-49804, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37816209

RESUMO

Two-photon polymerization (2PP) is an efficient technique to achieve high-resolution, three-dimensional (3D)-printed complex structures. However, it is restricted to photocurable monomer combinations, thus presenting constraints when aiming at attaining functionally active resist formulations and structures. In this context, metal nanoparticle (NP) integration as an additive can enable functionality and pave the way to more dedicated applications. Challenges lay on the maximum NP concentrations that can be incorporated into photocurable resist formulations due to the laser-triggered interactions, which primarily originate from laser scattering and absorption, as well as the limited dispersibility threshold. In this study, we propose an approach to address these two constraints by integrating metallic Rh NPs formed ex situ, purposely designed for this scope. The absence of surface plasmon resonance (SPR) within the visible and near-infrared spectra, coupled with the limited absorption value measured at the laser operating wavelength (780 nm), significantly limits the laser-induced interactions. Moreover, the dispersibility threshold is increased by engineering the NP surface to be compatible with the photocurable resin, permitting us to achieve concentrations of up to 2 wt %, which, to our knowledge, is significantly higher than the previously reported limit (or threshold) for embedded metal NPs. Another distinctive advantage of employing Rh NPs is their role as promising contrast agents for X-ray fluorescence (XRF) bioimaging. We demonstrated the presence of Rh NPs within the whole 2PP-printed structure and emphasized the potential use of NP-loaded 3D-printed nanostructures for medical devices.

10.
Biomater Adv ; 154: 213657, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37844415

RESUMO

Gene therapy involves replacing a faulty gene or adding a new gene inside the body's cells to cure disease or improve the body's ability to fight disease. Its popularity is evident from emerging concepts such as CRISPR-based genome editing and epigenetic studies and has been moved to a clinical setting. The strategy for therapeutic gene design includes; suppressing the expression of pathogenic genes, enhancing necessary protein production, and stimulating the immune system, which can be incorporated into both viral and non-viral gene vectors. Although non-viral gene delivery provides a safer platform, it suffers from an inefficient rate of gene transfection, which means a few genes could be successfully transfected and expressed within the cells. Incorporating nucleic acids into the viruses and using these viral vectors to infect cells increases gene transfection efficiency. Consequently, more cells will respond, more genes will be expressed, and sustained and successful gene therapy can be achieved. Combining nanoparticles (NPs) and nucleic acids protects genetic materials from enzymatic degradation. Furthermore, the vectors can be transferred faster, facilitating cell attachment and cellular uptake. Magnetically assisted viral transduction (magnetofection) enhances gene therapy efficiency by mixing magnetic nanoparticles (MNPs) with gene vectors and exerting a magnetic field to guide a significant number of vectors directly onto the cells. This research critically reviews the MNPs and the physiochemical properties needed to assemble an appropriate magnetic viral vector, discussing cellular hurdles and attitudes toward overcoming these barriers to reach clinical gene therapy perspectives. We focus on the studies conducted on the various applications of magnetic viral vectors in cancer therapies, regenerative medicine, tissue engineering, cell sorting, and virus isolation.


Assuntos
Ácidos Nucleicos , Vírus , Transfecção , Vetores Genéticos/genética , Técnicas de Transferência de Genes , Ácidos Nucleicos/genética , Vírus/genética
11.
Nanomedicine (Lond) ; 18(18): 1161-1173, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37665018

RESUMO

Aims: To investigate the distribution and toxicity of ruthenium nanoparticles (Ru NPs) injected intravenously in mice. Methods: We synthesized Ru NPs, followed their biodistribution by x-ray fluorescence (XRF) imaging and evaluated organ toxicity by histopathology and gene expression. Results: Ru NPs accumulated, mainly in liver and spleen, where they were phagocyted by tissue macrophages, giving a transient inflammation and oxidative stress response that declined after 2 weeks. Ru NPs gradually accumulated in the skin, which was confirmed by microscopic examination of skin biopsies. Conclusion: Ru NP toxicity in recipient organs is transient. Particles are at least partially excreted by the skin, supporting a role for the skin as a nanoparticle clearing organ.


Assuntos
Nanopartículas , Rutênio , Camundongos , Animais , Meios de Contraste/toxicidade , Raios X , Fluorescência , Distribuição Tecidual , Nanopartículas/metabolismo
12.
ACS Appl Mater Interfaces ; 14(17): 19295-19303, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35451835

RESUMO

Thermoelectric (TE) materials can have a strong benefit to harvest thermal energy if they can be applied to large areas without losing their performance over time. One way of achieving large-area films is through hybrid materials, where a blend of TE materials with polymers can be applied as coating. Here, we present the development of all solution-processed TE ink and hybrid films with varying contents of TE Sb2Te3 and Bi2Te3 nanomaterials, along with their characterization. Using (1-methoxy-2-propyl) acetate (MPA) as the solvent and poly (methyl methacrylate) as the durable polymer, large-area homogeneous hybrid TE films have been fabricated. The conductivity and TE power factor improve with nanoparticle volume fraction, peaking around 60-70% solid material fill factor. For larger fill factors, the conductivity drops, possibly because of an increase in the interface resistance through interface defects and reduced connectivity between the platelets in the medium. The use of dodecanethiol (DDT) as an additive in the ink formulation enabled an improvement in the electrical conductivity through modification of interfaces and the compactness of the resultant films, leading to a 4-5 times increase in the power factor for both p- and n-type hybrid TE films, respectively. The observed trends were captured by combining percolation theory with analytical resistive theory, with the above assumption of increasing interface resistance and connectivity with polymer volume reduction. The results obtained on these hybrid films open a new low-cost route to produce and implement TE coatings on a large scale, which can be ideal for driving flexible, large-area energy scavenging technologies such as personal medical devices and the IoT.

13.
Front Bioeng Biotechnol ; 10: 1083232, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36578508

RESUMO

Silver (Ag) is known to possess antimicrobial properties which is commonly attributed to soluble Ag ions. Here, we showed that Ag nanoparticles (NPs) potently inhibited SARS-CoV-2 infection using two different pseudovirus neutralization assays. We also evaluated a set of Ag nanoparticles of different sizes with varying surface properties, including polyvinylpyrrolidone (PVP)-coated and poly (ethylene glycol) (PEG)-modified Ag nanoparticles, and found that only the bare (unmodified) nanoparticles were able to prevent virus infection. For comparison, TiO2 nanoparticles failed to intercept the virus. Proteins and lipids may adsorb to nanoparticles forming a so-called bio-corona; however, Ag nanoparticles pre-incubated with pulmonary surfactant retained their ability to block virus infection in the present model. Furthermore, the secondary structure of the spike protein of SARS-CoV-2 was perturbed by the Ag nanoparticles, but not by the ionic control (AgNO3) nor by the TiO2 nanoparticles. Finally, Ag nanoparticles were shown to be non-cytotoxic towards the human lung epithelial cell line BEAS-2B and this was confirmed by using primary human nasal epithelial cells. These results further support that Ag nanoparticles may find use as anti-viral agents.

14.
Toxicol Appl Pharmacol ; 253(2): 81-93, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21435349

RESUMO

Engineered nanoparticles are being considered for a wide range of biomedical applications, from magnetic resonance imaging to "smart" drug delivery systems. The development of novel nanomaterials for biomedical applications must be accompanied by careful scrutiny of their biocompatibility. In this regard, particular attention should be paid to the possible interactions between nanoparticles and cells of the immune system, our primary defense system against foreign invasion. On the other hand, labeling of immune cells serves as an ideal tool for visualization, diagnosis or treatment of inflammatory processes, which requires the efficient internalization of the nanoparticles into the cells of interest. Here, we compare novel monodispersed silica-coated iron oxide nanoparticles with commercially available dextran-coated iron oxide nanoparticles. The silica-coated iron oxide nanoparticles displayed excellent magnetic properties. Furthermore, they were non-toxic to primary human monocyte-derived macrophages at all doses tested whereas dose-dependent toxicity of the smaller silica-coated nanoparticles (30nm and 50nm) was observed for primary monocyte-derived dendritic cells, but not for the similarly small dextran-coated iron oxide nanoparticles. No macrophage or dendritic cell secretion of pro-inflammatory cytokines was observed upon administration of nanoparticles. The silica-coated iron oxide nanoparticles were taken up to a significantly higher degree when compared to the dextran-coated nanoparticles, irrespective of size. Cellular internalization of the silica-coated nanoparticles was through an active, actin cytoskeleton-dependent process. We conclude that these novel silica-coated iron oxide nanoparticles are promising materials for medical imaging, cell tracking and other biomedical applications.


Assuntos
Células Dendríticas/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Nanopartículas de Magnetita/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Células Dendríticas/metabolismo , Relação Dose-Resposta a Droga , Humanos , Macrófagos/metabolismo , Magnetismo , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Dióxido de Silício
15.
Nanotechnology ; 22(42): 425202, 2011 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-21941036

RESUMO

Synthesis of colloidal nanocrystals of II-VI semiconductor materials has been refined in recent decades and their size dependent optoelectronic properties have been well established. Here we report a facile synthesis of CdSe-CdS core-shell heterostructures using a two-step hot injection process. Red-shifts in absorption and photoluminescence spectra show that the obtained quantum dots have quasi-type-II alignment of energy levels. The obtained nanocrystals have a heterostructure with a large and highly faceted tetrahedral CdS shell grown epitaxially over a spherical CdSe core. The obtained morphology as well as high resolution electron microscopy confirms that the tetrahedral shell have a zinc blende crystal structure. A phenomenological mechanism for the growth and morphology of the nanocrystals is discussed.

16.
J Nanosci Nanotechnol ; 11(11): 10201-6, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22413365

RESUMO

The application of surface modified magnetic adsorbent particles in combination with magnetic separation techniques has received considerable awareness in recent years. There is a particular need in protein purification and analysis for specific, functional and generic methods of protein binding on solid supports. Nanoscale superparamagnetic iron oxide particles have been used to purify a natural coagulant protein extracted from Moringa oleifera seeds. Spectrophotometric analysis of the coagulant protein was performed using synthetic clay solution as substrate. Protein binding with carboxyl and silica surface modified superparamagnetic iron oxide nanoparticles (SPION) were compared with the known carboxyl methyl cellulose (CMC) beads of approximately 1 microm. SPION modified with carboxyl surface showed higher binding capacity towards the coagulant protein compared to the CMC beads. The high surface area to volume ratio of the carboxyl-coated SPION resulted in high binding capacity and rapid adsorption kinetics of the crude protein extract. The purification and molecular weight of coagulant protein is analyzed by SDS-PAGE. This approach utilizes the most efficient, feasible and economical method of coagulant protein purification and it can also be applicable to other proteins that possess similar properties.


Assuntos
Nanopartículas de Magnetita/química , Proteínas de Plantas/isolamento & purificação , Adsorção , Coagulantes/isolamento & purificação , Peso Molecular , Moringa oleifera/química , Propriedades de Superfície
17.
Mater Sci Eng C Mater Biol Appl ; 120: 111756, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33545897

RESUMO

Carbon-based quantum dots (CDs) are mainly divided into two sub-groups; carbon quantum dots (CQDs) and graphene quantum dots (GQDs), which exhibit outstanding photoluminescence (PL) properties, low toxicity, superior biocompatibility and facile functionalization. Regarding these features, they have been promising candidates for biomedical science and engineering applications. In this work, we reviewed the efforts made to modify these zero-dimensional nano-materials to obtain the best properties for bio-imaging, drug and gene delivery, cancer therapy, and bio-sensor applications. Five main surface modification techniques with outstanding results are investigated, including doping, surface functionalization, polymer capping, nano-composite and core-shell structures, and the drawbacks and challenges in each of these methods are discussed.


Assuntos
Grafite , Pontos Quânticos , Carbono , Técnicas de Transferência de Genes , Polímeros
18.
Nanomaterials (Basel) ; 11(9)2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34578481

RESUMO

Nanoparticle (NP)-based contrast agents enabling different imaging modalities are sought for non-invasive bio-diagnostics. A hybrid material, combining optical and X-ray fluorescence is presented as a bioimaging contrast agent. Core NPs based on metallic rhodium (Rh) have been demonstrated to be potential X-ray Fluorescence Computed Tomography (XFCT) contrast agents. Microwave-assisted hydrothermal method is used for NP synthesis, yielding large-scale NPs within a significantly short reaction time. Rh NP synthesis is performed by using a custom designed sugar ligand (LODAN), constituting a strong reducing agent in aqueous solution, which yields NPs with primary amines as surface functional groups. The amino groups on Rh NPs are used to directly conjugate excitation-independent nitrogen-doped carbon quantum dots (CQDs), which are synthesized through citrate pyrolysis in ammonia solution. CQDs provided the Rh NPs with optical fluorescence properties and improved their biocompatibility, as demonstrated in vitro by Real-Time Cell Analysis (RTCA) on a macrophage cell line (RAW 264.7). The multimodal characteristics of the hybrid NPs are confirmed with confocal microscopy, and X-ray Fluorescence (XRF) phantom experiments.

19.
Nanomaterials (Basel) ; 11(8)2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34443884

RESUMO

Scalable synthetic strategies for high-quality and reproducible thermoelectric (TE) materials is an essential step for advancing the TE technology. We present here very rapid and effective methods for the synthesis of nanostructured bismuth telluride materials with promising TE performance. The methodology is based on an effective volume heating using microwaves, leading to highly crystalline nanostructured powders, in a reaction duration of two minutes. As the solvents, we demonstrate that water with a high dielectric constant is as good a solvent as ethylene glycol (EG) for the synthetic process, providing a greener reaction media. Crystal structure, crystallinity, morphology, microstructure and surface chemistry of these materials were evaluated using XRD, SEM/TEM, XPS and zeta potential characterization techniques. Nanostructured particles with hexagonal platelet morphology were observed in both systems. Surfaces show various degrees of oxidation, and signatures of the precursors used. Thermoelectric transport properties were evaluated using electrical conductivity, Seebeck coefficient and thermal conductivity measurements to estimate the TE figure-of-merit, ZT. Low thermal conductivity values were obtained, mainly due to the increased density of boundaries via materials nanostructuring. The estimated ZT values of 0.8-0.9 was reached in the 300-375 K temperature range for the hydrothermally synthesized sample, while 0.9-1 was reached in the 425-525 K temperature range for the polyol (EG) sample. Considering the energy and time efficiency of the synthetic processes developed in this work, these are rather promising ZT values paving the way for a wider impact of these strategic materials with a minimum environmental impact.

20.
ACS Nano ; 15(3): 5077-5085, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33587608

RESUMO

Nanoparticle (NP) based contrast agents detectable via different imaging modalities (multimodal properties) provide a promising strategy for noninvasive diagnostics. Core-shell NPs combining optical and X-ray fluorescence properties as bioimaging contrast agents are presented. NPs developed earlier for X-ray fluorescence computed tomography (XFCT), based on ceramic molybdenum oxide (MoO2) and metallic rhodium (Rh) and ruthenium (Ru), are coated with a silica (SiO2) shell, using ethanolamine as the catalyst. The SiO2 coating method introduced here is demonstrated to be applicable to both metallic and ceramic NPs. Furthermore, a fluorophore (Cy5.5 dye) was conjugated to the SiO2 layer, without altering the morphological and size characteristics of the hybrid NPs, rendering them with optical fluorescence properties. The improved biocompatibility of the SiO2 coated NPs without and with Cy5.5 is demonstrated in vitro by Real-Time Cell Analysis (RTCA) on a macrophage cell line (RAW 264.7). The multimodal characteristics of the core-shell NPs are confirmed with confocal microscopy, allowing the intracellular localization of these NPs in vitro to be tracked and studied. In situ XFCT successfully showed the possibility of in vivo multiplexed bioimaging for multitargeting studies with minimum radiation dose. Combined optical and X-ray fluorescence properties empower these NPs as effective macroscopic and microscopic imaging tools.


Assuntos
Nanopartículas , Dióxido de Silício , Meios de Contraste , Corantes Fluorescentes , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA