Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Brain Behav Immun ; 64: 80-90, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28385651

RESUMO

The renin-angiotensin system (RAS) is a major circulative system engaged in homeostasis modulation. Angiotensin II (Ang II) serves as its main effector hormone upon binding to its primary receptor, Ang II receptor type 1 (AT1R). It is well established that an intrinsic independent brain RAS exists. Abnormal AT1R activation both in the periphery and in the brain probably contributes to the development of Alzheimer's disease (AD) pathology that is characterized, among others, by brain inflammation. Moreover, treatment with drugs that block AT1R (AT1R blockers, ARBs) ameliorates most of the clinical risk factors leading to AD. Previously we showed that short period of intranasal treatment with telmisartan (a brain penetrating ARB) reduced brain inflammation and ameliorated amyloid burden (a component of Alzheimer's plaques) in AD transgenic mouse model. In the present study, we aimed to examine the long-term effect of intranasally administrated telmisartan on brain inflammation features including microglial activation, astrogliosis, neuronal loss and hippocampus-dependent cognition in five-familial AD mouse model (5XFAD). Five month of intranasal treatment with telmisartan significantly reduced amyloid burden in the cortex and hippocampus of 5XFAD mice as compared with the vehicle-treated 5XFAD group. Similar effects were also observed for CD11b staining, which is a marker for microglial accumulation. Telmisartan also significantly reduced astrogliosis and neuronal loss in the cortex of 5XFAD mice compared with the vehicle-treated group. Improved spatial acquisition of the 5XFAD mice following long-term intranasal administration of telmisartan was also observed. Taken together, our data suggest a significant role for AT1R blockage in mediating neuronal loss and cognitive behavior, possibly through regulation of amyloid burden and glial inflammation.


Assuntos
Doença de Alzheimer/patologia , Bloqueadores do Receptor Tipo 1 de Angiotensina II/administração & dosagem , Benzimidazóis/administração & dosagem , Benzoatos/administração & dosagem , Encefalite/patologia , Administração Intranasal , Doença de Alzheimer/complicações , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Animais , Polaridade Celular/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/patologia , Modelos Animais de Doenças , Encefalite/complicações , Encefalite/tratamento farmacológico , Feminino , Gliose/tratamento farmacológico , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Processamento Espacial/efeitos dos fármacos , Telmisartan
2.
Biol Chem ; 397(4): 345-51, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26556847

RESUMO

An Increasing body of evidence supports a critical role of brain inflammation in the pathogenesis of Alzheimer's disease. A principal aspect of the brain immune response to inflammation is the activation of microglia. It has been shown that the kinin system is activated during brain inflammation and previously we demonstrated that bradykinin B1 receptor agonist reduced microglial activation in vitro. The aim of the present study was to investigate the effects of bradykinin B1 or B2 receptor antagonists on microglial release of pro-inflammatory factors in BV2 microglia. In vivo, we focused on the effects of intranasally given kinin antagonists on amyloid burden and microglia/macrophage marker expression in brains of 5X familial Alzheimer's disease mice. The present data show that pharmacological antagonism of B1 receptor (R-715) but not B2 receptor (HOE-140) markedly increased nitric oxide and tumor necrosis factor alpha release from BV2 microglial cells. We also showed that intranasal treatment with R-715 but not HOE-140 of Alzheimer's mice enhanced amyloid beta burden and microglia/macrophages activation. Taken together, our data reveal a possible role for the bradykinin B1 receptor in neuroinflammation and in the control of Abeta accumulation in transgenic mice, possibly through regulation of glial cell responses.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Antagonistas dos Receptores da Bradicinina/administração & dosagem , Antagonistas dos Receptores da Bradicinina/farmacologia , Bradicinina/análogos & derivados , Receptor B1 da Bradicinina/metabolismo , Receptor B2 da Bradicinina/metabolismo , Administração Intranasal , Animais , Bradicinina/administração & dosagem , Bradicinina/química , Bradicinina/farmacologia , Antagonistas dos Receptores da Bradicinina/química , Células Cultivadas , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Relação Estrutura-Atividade
3.
CNS Neurosci Ther ; 24(3): 231-242, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29365370

RESUMO

AIMS: Alzheimer's disease (AD) pathology is associated with brain inflammation involving microglia and astrocytes. The renin-angiotensin system contributes to brain inflammation associated with AD pathology. This study aimed to investigate the role of candesartan, an angiotensin II type 1 receptor blocker, in modulation of glial functions associated with AD. METHODS: Focusing on the role of candesartan in glial inflammation, we evaluated inflammatory mediators' levels, secreted by lipopolysaccharide-induced microglia following candesartan treatment. Also, short-term intranasal candesartan effects on amyloid burden and microglial activation were investigated in 5 familial AD mice. RESULTS: Candesartan showed anti-inflammatory effects and shifted microglial activation toward a more neuroprotective phenotype. Candesartan decreased the lipopolysaccharide-induced nitric oxide synthase and cyclooxygenase-2 expression levels, which was accompanied by an induction of arginase-1 expression levels and enhanced Aß1-42 uptake by microglia. Moreover, intranasally administered candesartan to AD mice model significantly reduced the amyloid burden and microglia activation in the hippocampus. CONCLUSIONS: These results thus shed light on the neuroprotective role of candesartan in the early stage of AD, which might relate to modulation of microglial activation states.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/imunologia , Anti-Inflamatórios não Esteroides/farmacologia , Benzimidazóis/farmacologia , Encefalite/tratamento farmacológico , Encefalite/etiologia , Tetrazóis/farmacologia , Doença de Alzheimer/patologia , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Animais , Compostos de Bifenilo , Linhagem Celular , Modelos Animais de Doenças , Encefalite/patologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Microglia/imunologia , Microglia/patologia , Fármacos Neuroprotetores/farmacologia , Fagocitose/efeitos dos fármacos , Fagocitose/fisiologia , Ratos
4.
Front Cell Neurosci ; 12: 116, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29765306

RESUMO

The renin-angiotensin system (RAS) is an important peripheral system involved in homeostasis modulation, with angiotensin II (Ang II) serving as the main effector hormone. The main enzyme involved in Ang II formation is angiotensin-converting enzyme (ACE). ACE inhibitors (ACEIs) such as captopril (Cap) are predominantly used for the management of hypertension. All of the components of the RAS have also been identified in brain. Centrally located hormones such as Ang II can induce glial inflammation. Moreover, in Alzheimer's disease (AD) models, where glial inflammation occurs and is thought to contribute to the propagation of the disease, increased levels of Ang II and ACE have been detected. Interestingly, ACE overexpression in monocytes, migrating to the brain was shown to prevent AD cognitive decline. However, the specific effects of captopril on glial inflammation and AD remain obscure. In the present study, we investigated the effect of captopril, given at a wide concentration range, on inflammatory mediators released by lipopolysaccharide (LPS)-treated glia. In the current study, both primary glial cells and the BV2 microglial cell line were used. Captopril decreased LPS-induced nitric oxide (NO) release from primary mixed glial cells as well as regulating inducible NO synthase (iNOS) expression, NO, tumor necrosis factor-α (TNF-α) and induced interleukin-10 (IL-10) production by BV2 microglia. We further obtained data regarding intranasal effects of captopril on cortical amyloid ß (Aß) and CD11b expression in 5XFAD cortex over three different time periods. Interestingly, we noted decreases in Aß burden in captopril-treated mice over time which was paralleled by increased microglial activation. These results thus shed light on the neuroprotective role of captopril in AD which might be related to modulation of microglial activation.

5.
Artigo em Inglês | MEDLINE | ID: mdl-28469598

RESUMO

The importance of brain inflammation to Alzheimer's disease (AD) pathogenesis has been accepted of late, with it currently being held that brain inflammation aggravates AD pathology. One important aspect of brain inflammation is the recruitment and activation of microglia, a process termed microgliosis. Kinins and bradykinin (BK), in particular, are major pro-inflammatory mediators in the periphery, although all of the factors comprising the kinin system have also been described in the brain. Moreover, it was shown that the amyloid ß (Aß) peptide (a component of AD plaques) enhances kinin secretion and activates BK receptors that can, in turn, stimulate Aß production. Still, the role of bradykinin in modulating brain inflammation and AD is not completely understood. In this study, we aimed to investigate the roles of the bradykinin B1 receptor (B1R) and bradykinin B2 receptor (B2R) in regulating microglial secretion of pro-inflammatory factors in vitro. Furthermore, the effects of intranasal administration of specific B1R and B2R antagonists on Aß burden and microglial accumulation in the brains of transgenic AD mice were studied. The data obtained show that neither R-715 (a B1R antagonist) nor HOE 140 (a B2R antagonist) altered microglial cell viability. However, R-715, but not HOE 140, markedly increased lipopolysaccharide-induced nitric oxide (NO) and tumor necrosis factor-alpha (TNF-α) release, as well as inducible nitric oxide synthase expression in BV2 microglial cells. Neither antagonist altered NO nor TNF-α production in non-stimulated cells. We also showed that intranasal administration of R-715 but not HOE 140 to 8-week-old 5X familial AD mice enhanced amyloid burden and microglia/macrophage accumulation in the cortex. To conclude, we provide evidence supporting a role of B1R in brain inflammation and in the regulation of amyloid deposition in AD mice, possibly with microglial/macrophage involvement. Further studies are required to test whether modulation of this receptor can serve as a novel therapeutic strategy for AD.

6.
J Neuroimmune Pharmacol ; 11(4): 774-785, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27562846

RESUMO

Angiotensin converting enzyme (ACE) converts Angiotensin I to a potent vasoconstrictor angiotensin II (ANG II). ACE inhibitors (ACEIs) are widely used for the management of hypertension. All components of the renin-angiotensin system (RAS) have also been identified in the brain. In addition to cytokines, neuromodulators such as ANG II can induce neuroinflammation. Moreover, in Alzheimer's disease (AD) models, where neuroinflammation occurs and is thought to contribute to the propagation of the disease, increased levels of ANG II and ACE have been detected. However, the specific effect of ACEIs on neuroinflammation and AD remains obscure. The present study suggests that captopril and perindopril, centrally active ACEIs, may serve as modulators for microglial activation associated with AD. Our in vitro study investigated the effect of both ACEIs on nitric oxide (NO), tumor necrosis factor- α (TNF-α) release and inducible NO synthase (iNOS) expression in lipopolysaccharide (LPS)-induced BV2 microglia. Exposure of BV2 microglia to ACEIs significantly attenuated the LPS-induced NO and TNF-α release. In vivo, short term intranasal administration of perindopril or captopril to 5 Familial AD (5XFAD) mice significantly reduced amyloid burden and CD11b expression (a microglial marker) or only CD11b expression respectively, in the cortex of 5XFAD. Long-term intranasal administration of captopril to mice reduced amyloid burden with no effect on CD11b expression. We provide evidence that intranasal delivery of ACEI may serve as an efficient alternative for their systemic administration, as it results in the attenuation of microglial accumulation and even the reduction of Amyloid ß (Aß) plaques.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Encefalite/tratamento farmacológico , Encefalite/metabolismo , Microglia/metabolismo , Doença de Alzheimer/patologia , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Animais , Linhagem Celular , Encefalite/patologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Microglia/patologia
7.
PLoS One ; 11(5): e0155823, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27187688

RESUMO

The circulating renin-angiotensin system (RAS), including the biologically active angiotensin II, is a fundamental regulatory mechanism of blood pressure conserved through evolution. Angiotensin II components of the RAS have also been identified in the brain. In addition to pro-inflammatory cytokines, neuromodulators, such as angiotensin II can induce (through angiotensin type 1 receptor (AT1R)) some of the inflammatory actions of brain glial cells and influence brain inflammation. Moreover, in Alzheimer's disease (AD) models, where neuroinflammation occurs, increased levels of cortical AT1Rs have been shown. Still, the precise role of RAS in neuroinflammation is not completely clear. The overall aim of the present study was to elucidate the role of RAS in the modulation of glial functions and AD pathology. To reach this goal, the specific aims of the present study were a. to investigate the long term effect of telmisartan (AT1R blocker) on tumor necrosis factor-α (TNF-α), interleukin 1-ß (IL1-ß) and nitric oxide (NO) release from glial cells. b. to examine the effect of intranasally administered telmisartan on amyloid burden and microglial activation in 5X familial AD (5XFAD) mice. Telmisartan effects in vivo were compared to those of perindopril (angiotensin converting enzyme inhibitor). Long-term-exposure of BV2 microglia to telmisartan significantly decreased lipopolysaccharide (LPS) -induced NO, inducible NO synthase, TNF-α and IL1-ß synthesis. The effect of Telmisartan on NO production in BV2 cells was confirmed also in primary neonatal rat glial cells. Intranasal administration of telmisartan (1 mg/kg/day) for up to two months significantly reduced amyloid burden and CD11b expression (a marker for microglia) both in the cortex and hipoccampus of 5XFAD. Based on the current view of RAS and our data, showing reduced amyloid burden and glial activation in the brains of 5XFAD transgenic mice, one may envision potential intervention with the progression of glial activation and AD by using AT1R blockers.


Assuntos
Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Benzimidazóis/farmacologia , Benzoatos/farmacologia , Neuroglia/efeitos dos fármacos , Administração Intranasal , Doença de Alzheimer/dietoterapia , Doença de Alzheimer/metabolismo , Animais , Benzimidazóis/administração & dosagem , Benzoatos/administração & dosagem , Linhagem Celular , Células Cultivadas , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Óxido Nítrico/metabolismo , Ratos , Ratos Wistar , Sistema Renina-Angiotensina/fisiologia , Telmisartan
8.
Eur J Pharmacol ; 741: 323-9, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25169427

RESUMO

The role of kinins, well known as peripheral inflammatory mediators, in the modulation of brain inflammation is not completely understood. The present data show that bradykinin, a B2 receptor agonist, enhanced both basal and lipopolysaccharide (LPS)-induced cyclooxygenase-2 mRNA and protein levels and prostaglandin E2 synthesis in primary rat astrocytes. By contrast, Lys-des-Arg(9)-bradykinin, which is a bradykinin breakdown product and a selective kinin B1 receptor agonist, attenuated both basal and LPS-induced astrocyte cyclooxygenase-2 mRNA levels and prostaglandin E2 production. Pre-treating the cells with p42/p44 MAPK but not with JNK or p38 inhibitors completely abrogated PGE2 synthesis in cells stimulated with LPS in the presence of bradykinin or bradykinin B1 receptor agonist. Bradykinin, but not the bradykinin B1 receptor agonist, augmented p42/p44 MAPK phosphorylation. The phosphorylation of JNK and p38 was not altered upon exposure to Bradykinin or the bradykinin B1 receptor agonist. These results suggest that the dual delayed effect of kinins on PGE2 synthesis may be due to differential regulation of COX-2 and signaling molecules such as p42/p44 MAPKs. Thus, kinins may exert opposing actions on brain inflammation and neurodegenerative diseases.


Assuntos
Astrócitos/efeitos dos fármacos , Dinoprostona/fisiologia , Cininas/farmacologia , Proteínas Quinases Ativadas por Mitógeno/fisiologia , Animais , Animais Recém-Nascidos , Astrócitos/enzimologia , Células Cultivadas , Masculino , Prostaglandinas/fisiologia , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA