Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 594(7861): 117-123, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34012113

RESUMO

The human genome expresses thousands of natural antisense transcripts (NAT) that can regulate epigenetic state, transcription, RNA stability or translation of their overlapping genes1,2. Here we describe MAPT-AS1, a brain-enriched NAT that is conserved in primates and contains an embedded mammalian-wide interspersed repeat (MIR), which represses tau translation by competing for ribosomal RNA pairing with the MAPT mRNA internal ribosome entry site3. MAPT encodes tau, a neuronal intrinsically disordered protein (IDP) that stabilizes axonal microtubules. Hyperphosphorylated, aggregation-prone tau forms the hallmark inclusions of tauopathies4. Mutations in MAPT cause familial frontotemporal dementia, and common variations forming the MAPT H1 haplotype are a significant risk factor in many tauopathies5 and Parkinson's disease. Notably, expression of MAPT-AS1 or minimal essential sequences from MAPT-AS1 (including MIR) reduces-whereas silencing MAPT-AS1 expression increases-neuronal tau levels, and correlate with tau pathology in human brain. Moreover, we identified many additional NATs with embedded MIRs (MIR-NATs), which are overrepresented at coding genes linked to neurodegeneration and/or encoding IDPs, and confirmed MIR-NAT-mediated translational control of one such gene, PLCG1. These results demonstrate a key role for MAPT-AS1 in tauopathies and reveal a potentially broad contribution of MIR-NATs to the tightly controlled translation of IDPs6, with particular relevance for proteostasis in neurodegeneration.


Assuntos
Biossíntese de Proteínas/genética , Proteostase/genética , RNA Antissenso/genética , Tauopatias/genética , Tauopatias/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Idoso , Animais , Sítios de Ligação , Encéfalo/metabolismo , Encéfalo/patologia , Estudos de Casos e Controles , Diferenciação Celular , Progressão da Doença , Feminino , Humanos , Sítios Internos de Entrada Ribossomal/genética , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Neurônios/metabolismo , Neurônios/patologia , Ribossomos/metabolismo , Proteínas tau/biossíntese
2.
Gene Ther ; 29(6): 357-367, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35314779

RESUMO

We have been developing CRISPR-directed gene editing as an augmentative therapy for the treatment of non-small cell lung carcinoma (NSCLC) by genetic disruption of Nuclear Factor Erythroid 2-Related Factor 2 (NRF2). NRF2 promotes tumor cell survival in response to therapeutic intervention and thus its disablement should restore or enhance effective drug action. Here, we report how NRF2 disruption leads to collateral damage in the form of CRISPR-mediated exon skipping. Heterogeneous populations of transcripts and truncated proteins produce a variable response to chemotherapy, dependent on which functional domain is missing. We identify and characterize predicted and unpredicted transcript populations and discover that several types of transcripts arise through exon skipping; wherein one or two NRF2 exons are missing. In one specific case, the presence or absence of a single nucleotide determines whether an exon is skipped or not by reorganizing Exonic Splicing Enhancers (ESEs). We isolate and characterize the diversity of clones induced by CRISPR activity in a NSCLC tumor cell population, a critical and often overlooked genetic byproduct of this exciting technology. Finally, gRNAs must be designed with care to avoid altering gene expression patterns that can account for variable responses to solid tumor therapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/terapia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Éxons/genética , Edição de Genes , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Fator 2 Relacionado a NF-E2/genética
3.
Am J Physiol Heart Circ Physiol ; 320(2): H593-H603, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33275521

RESUMO

Our prior work has shown that Na+ current (INa) affects sarcoplasmic reticular (SR) Ca2+ release by activating early reverse of the Na+-Ca2+ exchanger (NCX). The resulting Ca2+ entry primes the dyadic cleft, which appears to increase Ca2+ channel coupling fidelity. It has been shown that the skeletal isoform of the voltage-gated Na+ channel (Nav1.4) is the main tetrodotoxin (TTX)-sensitive Nav isoform expressed in adult rabbit ventricular cardiomyocytes. Here, I tested the hypothesis that it is also the principal isoform involved in the priming mechanism. Action potentials (APs) were evoked in isolated rabbit ventricular cells loaded with fluo-4, and simultaneously recorded Ca2+ transients before and after the application of either relatively low doses of TTX (100 nM), the specific Nav1.4 inhibitor µ-Conotoxin GIIIB or the specific Nav1.1 inhibitor ICA 121430. Although APs changes after the application of each drug reflected the relative abundance of each isoform, the effects of TTX and GIIIB on SR Ca2+ release (measured as the transient maximum upstroke velocity) were no different. Furthermore, this reduction in SR Ca2+ release was comparable with the value that we obtained previously when total INa was inactivated with a ramp applied under voltage clamp. Finally, SR Ca2+ release was unaltered by the same ramp in the presence of TTX or GIIB. In contrast, application of ICA had no effect of SR Ca2+ release. These results suggest that Nav1.4 is the main Nav isoform involved in regulating the efficiency of excitation-contraction coupling in rabbit cardiomyocytes by priming the junction via activation of reverse-mode NCX.NEW & NOTEWORTHY A number of studies suggest that the Na+-Ca2+ exchanger (NCX) activated by Na+ currents is involved in the process of excitation-contraction (EC) coupling in cardiac ventricular myocytes. Although insufficient to trigger sarcoplasmic Ca2+ release alone, the Ca2+ entering through reverse NCX during an action potential can prime the dyadic cleft and increase the Ca2+ current coupling fidelity. Using specific Na+ inhibitors in this study, we show that in rabbit ventricular cells the skeletal Na+ channel isoform (Nav1.4) is the main isoform responsible for this priming. Our study provides insights into a mechanism that may have an increased relevance where EC coupling is remodeled.


Assuntos
Acoplamento Excitação-Contração , Miócitos Cardíacos/metabolismo , Canais de Sódio/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Potenciais de Ação , Animais , Sinalização do Cálcio , Células Cultivadas , Feminino , Masculino , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Coelhos , Bloqueadores dos Canais de Sódio/farmacologia
4.
Am J Med Genet A ; 185(3): 774-780, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33382187

RESUMO

Noonan syndrome (NS) and NS related disorders (NRD) are frequent monogenic diseases. Pathogenic variants in PTPN11 are observed in approximately 50% of these NS patients. Several pleiotropic phenotypes have previously been described in this condition. This study aimed at characterizing glucose and lipid profiles in patients with NS/NRD. We assessed fasting blood glucose, insulin, cholesterol (total and fractions), and triglyceride (TG) levels in 112 prepubertal children and 73 adults. Additionally, an oral glucose tolerance test (OGTT) was performed in 40 children and 54 adults. Data were analyzed between age groups according to the presence (+) or absence (-) of PTPN11 mutation. Prepubertal patients with NS/NRD were also compared with a control group. Despite the lean phenotype of children with NS/NRD, they presented an increased frequency of low HDL-cholesterol (63% in PTPN11+, 59% in PTPN11- and 16% in control, p < .001) and high TG levels (29% in PTPN11+, 18% in PTPN11- and 2.3% in control). PTPN11+ patients had a higher median HOMA-IR (1.0, ranged from 0.3 to 3.2) in comparison with PTPN11- (0.6; 0.2 to 4.4) and controls (0.6; 0.4 to 1.4, p = .027). Impaired glucose tolerance was observed in 19% (10:54) of lean adults with NS/NRD assessed by OGTT. Moreover, women with PTPN11 mutations had lower HDL-cholesterol levels than those without. Our results suggest that children and young adult patients with NS/NRD have an unfavorable metabolic profile characterized by low HDL, a tendency of elevated TGs, and glucose metabolism impairment despite a lean phenotype.


Assuntos
Metaboloma , Síndrome de Noonan/patologia , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Adolescente , Adulto , Idoso , Estudos Transversais , Feminino , Seguimentos , Estudos de Associação Genética , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Síndrome de Noonan/genética , Síndrome de Noonan/metabolismo , Fenótipo , Prognóstico , Adulto Jovem
5.
Int J Mol Sci ; 22(8)2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33917142

RESUMO

The mechanism of action of ssODN-directed gene editing has been a topic of discussion within the field of CRISPR gene editing since its inception. Multiple comparable, but distinct, pathways have been discovered for DNA repair both with and without a repair template oligonucleotide. We have previously described the ExACT pathway for oligo-driven DNA repair, which consisted of a two-step DNA synthesis-driven repair catalyzed by the simultaneous binding of the repair oligonucleotide (ssODN) upstream and downstream of the double-strand break. In order to better elucidate the mechanism of ExACT-based repair, we have challenged the assumptions of the pathway with those outlines in other similar non-ssODN-based DNA repair mechanisms. This more comprehensive iteration of the ExACT pathway better described the many different ways where DNA repair can occur in the presence of a repair oligonucleotide after CRISPR cleavage, as well as how these previously distinct pathways can overlap and lead to even more unique repair outcomes.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Reparo de DNA por Recombinação , Reparo do DNA , Mutação INDEL , Modelos Biológicos , RNA Guia de Cinetoplastídeos
6.
J Physiol ; 597(15): 3817-3832, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31173379

RESUMO

KEY POINTS: Association of plasma membrane BKCa channels with BK-ß subunits shapes their biophysical properties and physiological roles; however, functional modulation of the mitochondrial BKCa channel (mitoBKCa ) by BK-ß subunits is not established. MitoBKCa -α and the regulatory BK-ß1 subunit associate in mouse cardiac mitochondria. A large fraction of mitoBKCa display properties similar to that of plasma membrane BKCa when associated with BK-ß1 (left-shifted voltage dependence of activation, V1/2  = -55 mV, 12 µm matrix Ca2+ ). In BK-ß1 knockout mice, cardiac mitoBKCa displayed a low Po and a depolarized V1/2 of activation (+47 mV at 12 µm matrix Ca2+ ) Co-expression of BKCa with the BK-ß1 subunit in HeLa cells doubled the density of BKCa in mitochondria. The present study supports the view that the cardiac mitoBKCa channel is functionally modulated by the BK-ß1 subunit; proper targeting and activation of mitoBKCa shapes mitochondrial Ca2+ handling. ABSTRACT: Association of the plasma membrane BKCa channel with auxiliary BK-ß1-4 subunits profoundly affects the regulatory mechanisms and physiological processes in which this channel participates. However, functional association of mitochondrial BK (mitoBKCa ) with regulatory subunits is unknown. We report that mitoBKCa functionally associates with its regulatory subunit BK-ß1 in adult rodent cardiomyocytes. Cardiac mitoBKCa is a calcium- and voltage-activated channel that is sensitive to paxilline with a large conductance for K+ of 300 pS. Additionally, mitoBKCa displays a high open probability (Po ) and voltage half-activation (V1/2  = -55 mV, n = 7) resembling that of plasma membrane BKCa when associated with its regulatory BK-ß1 subunit. Immunochemistry assays demonstrated an interaction between mitochondrial BKCa -α and its BK-ß1 subunit. Mitochondria from the BK-ß1 knockout (KO) mice showed sparse mitoBKCa currents (five patches with mitoBKCa activity out of 28 total patches from n = 5 different hearts), displaying a depolarized V1/2 of activation (+47 mV in 12 µm matrix Ca2+ ). The reduced activity of mitoBKCa was accompanied by a high expression of BKCa transcript in the BK-ß1 KO, suggesting a lower abundance of mitoBKCa channels in this genotype. Accordingly, BK-ß1subunit increased the localization of BKDEC (i.e. the splice variant of BKCa that specifically targets mitochondria) into mitochondria by two-fold. Importantly, both paxilline-treated and BK-ß1 KO mitochondria displayed a more rapid Ca2+ overload, featuring an early opening of the mitochondrial transition pore. We provide strong evidence that mitoBKCa associates with its regulatory BK-ß1 subunit in cardiac mitochondria, ensuring proper targeting and activation of the mitoBKCa channel that helps to maintain mitochondrial Ca2+ homeostasis.


Assuntos
Subunidades beta do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , Potenciais de Ação , Animais , Células Cultivadas , Ativação do Canal Iônico , Subunidades beta do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Masculino , Miócitos Cardíacos/fisiologia , Ligação Proteica , Ratos , Ratos Sprague-Dawley
7.
Am J Physiol Heart Circ Physiol ; 316(6): H1507-H1527, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30875259

RESUMO

The "stress" kinases cAMP-dependent protein kinase (PKA) and calcium/calmodulin-dependent protein kinase II (CaMKII), phosphorylate the Na+ channel Nav1.5 subunit to regulate its function. However, how the channel regulation translates to ventricular conduction is poorly understood. We hypothesized that the stress kinases positively and differentially regulate conduction in the right (RV) and the left (LV) ventricles. We applied the CaMKII blocker KN93 (2.75 µM), PKA blocker H89 (10 µM), and broad-acting phosphatase blocker calyculin (30 nM) in rabbit hearts paced at a cycle length (CL) of 150-8,000 ms. We used optical mapping to determine the distribution of local conduction delays (inverse of conduction velocity). Control hearts exhibited constant and uniform conduction at all tested CLs. Calyculin (15-min perfusion) accelerated conduction, with greater effect in the RV (by 15.3%) than in the LV (by 4.1%; P < 0.05). In contrast, both KN93 and H89 slowed down conduction in a chamber-, time-, and CL-dependent manner, with the strongest effect in the RV outflow tract (RVOT). Combined KN93 and H89 synergistically promoted conduction slowing in the RV (KN93: 24.7%; H89: 29.9%; and KN93 + H89: 114.2%; P = 0.0016) but not the LV. The progressive depression of RV conduction led to conduction block and reentrant arrhythmias. Protein expression levels of both the CaMKII-δ isoform and the PKA catalytic subunit were higher in the RVOT than in the apical LV (P < 0.05). Thus normal RV conduction requires a proper balance between kinase and phosphatase activity. Dysregulation of this balance due to pharmacological interventions or disease is potentially proarrhythmic. NEW & NOTEWORTHY We show that uniform ventricular conduction requires a precise physiological balance of the activities of calcium/calmodulin-dependent protein kinase II (CaMKII), PKA, and phosphatases, which involves region-specific expression of CaMKII and PKA. Inhibiting CaMKII and/or PKA activity elicits nonuniform conduction depression, with the right ventricle becoming vulnerable to the development of conduction disturbances and ventricular fibrillation/ventricular tachycardia.


Assuntos
Arritmias Cardíacas/enzimologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Frequência Cardíaca , Ventrículos do Coração/enzimologia , Fosfoproteínas Fosfatases/metabolismo , Função Ventricular Esquerda , Potenciais de Ação , Animais , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/fisiopatologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Estimulação Cardíaca Artificial , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Feminino , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/fisiopatologia , Preparação de Coração Isolado , Masculino , Fosfoproteínas Fosfatases/antagonistas & inibidores , Coelhos , Transdução de Sinais , Fatores de Tempo , Função Ventricular Direita
8.
Food Microbiol ; 78: 11-17, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30497591

RESUMO

Clostridium tyrobutyricum is a bacteria of concern in the cheese industry, capable of surviving the manufacturing process and causing butyric acid fermentation and late blowing defect of cheese. In this work, we implement a method based on the cell wall-binding domain (CBD) of endolysin CTP1L, which detects C. tyrobutyricum, to monitor its evolution in cheeses challenged with clostridial spores and in the presence or absence of reuterin, an anti-clostridial agent. For this purpose, total bacteria were extracted from cheese samples and C. tyrobutyricum cells were specifically labelled with the CBD of CTP1L attached to green fluorescent protein (GFP), and detected by fluorescence microscopy. By using this GFP-CBD, germinated spores were visualized on day 1 in all cheeses inoculated with clostridial spores. Vegetative cells of C. tyrobutyricum, responsible for butyric acid fermentation, were detected in cheeses without reuterin from 30 d onwards, when LBD symptoms also became evident. The number of fluorescent Clostridium cells increased during ripening in the blowing cheeses. However, vegetative cells of C. tyrobutyricum were not detected in cheese containing the antimicrobial reuterin, which also did not show LBD throughout ripening. This simple and fast method provides a helpful tool to study the evolution of C. tyrobutyricum during cheese ripening.


Assuntos
Parede Celular/metabolismo , Queijo/microbiologia , Clostridium tyrobutyricum/metabolismo , Endopeptidases/metabolismo , Microbiologia de Alimentos/métodos , Esporos Bacterianos/metabolismo , Animais , Ácido Butírico/metabolismo , Parede Celular/química , Queijo/análise , Clostridium tyrobutyricum/efeitos dos fármacos , Clostridium tyrobutyricum/crescimento & desenvolvimento , DNA Bacteriano , Feminino , Fermentação , Gliceraldeído/análogos & derivados , Gliceraldeído/farmacologia , Proteínas de Fluorescência Verde/metabolismo , Leite/microbiologia , Imagem Óptica/métodos , Propano/farmacologia , Ovinos
9.
Ecology ; 99(7): 1691, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29961270

RESUMO

The field of movement ecology has rapidly grown during the last decade, with important advancements in tracking devices and analytical tools that have provided unprecedented insights into where, when, and why species move across a landscape. Although there has been an increasing emphasis on making animal movement data publicly available, there has also been a conspicuous dearth in the availability of such data on large carnivores. Globally, large predators are of conservation concern. However, due to their secretive behavior and low densities, obtaining movement data on apex predators is expensive and logistically challenging. Consequently, the relatively small sample sizes typical of large carnivore movement studies may limit insights into the ecology and behavior of these elusive predators. The aim of this initiative is to make available to the conservation-scientific community a dataset of 134,690 locations of jaguars (Panthera onca) collected from 117 individuals (54 males and 63 females) tracked by GPS technology. Individual jaguars were monitored in five different range countries representing a large portion of the species' distribution. This dataset may be used to answer a variety of ecological questions including but not limited to: improved models of connectivity from local to continental scales; the use of natural or human-modified landscapes by jaguars; movement behavior of jaguars in regions not represented in this dataset; intraspecific interactions; and predator-prey interactions. In making our dataset publicly available, we hope to motivate other research groups to do the same in the near future. Specifically, we aim to help inform a better understanding of jaguar movement ecology with applications towards effective decision making and maximizing long-term conservation efforts for this ecologically important species. There are no costs, copyright, or proprietary restrictions associated with this data set. When using this data set, please cite this article to recognize the effort involved in gathering and collating the data and the willingness of the authors to make it publicly available.


Assuntos
Panthera , Animais , Ecologia , Feminino , Humanos , Masculino , Movimento
10.
J Mol Cell Cardiol ; 113: 22-32, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28962857

RESUMO

Calcium (Ca2+) influx into the mitochondrial matrix stimulates ATP synthesis. Here, we investigate whether mitochondrial Ca2+ transport pathways are altered in the setting of deficient mitochondrial energy synthesis, as increased matrix Ca2+ may provide a stimulatory boost. We focused on mitochondrial cardiomyopathies, which feature such dysfunction of oxidative phosphorylation. We study a mouse model where the main transcription factor for mitochondrial DNA (transcription factor A, mitochondrial, Tfam) has been disrupted selectively in cardiomyocytes. By the second postnatal week (10-15day old mice), these mice have developed a dilated cardiomyopathy associated with impaired oxidative phosphorylation. We find evidence of increased mitochondrial Ca2+ during this period using imaging, electrophysiology, and biochemistry. The mitochondrial Ca2+ uniporter, the main portal for Ca2+ entry, displays enhanced activity, whereas the mitochondrial sodium-calcium (Na+-Ca2+) exchanger, the main portal for Ca2+ efflux, is inhibited. These changes in activity reflect changes in protein expression of the corresponding transporter subunits. While decreased transcription of Nclx, the gene encoding the Na+-Ca2+ exchanger, explains diminished Na+-Ca2+ exchange, the mechanism for enhanced uniporter expression appears to be post-transcriptional. Notably, such changes allow cardiac mitochondria from Tfam knockout animals to be far more sensitive to Ca2+-induced increases in respiration. In the absence of Ca2+, oxygen consumption declines to less than half of control values in these animals, but rebounds to control levels when incubated with Ca2+. Thus, we demonstrate a phenotype of enhanced mitochondrial Ca2+ in a mitochondrial cardiomyopathy model, and show that such Ca2+ accumulation is capable of rescuing deficits in energy synthesis capacity in vitro.


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Cardiomiopatias/metabolismo , Mitocôndrias Cardíacas/metabolismo , Animais , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Fosforilação Oxidativa , Sódio/metabolismo , Trocador de Sódio e Cálcio/metabolismo
11.
J Biol Chem ; 291(10): 4882-93, 2016 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26683375

RESUMO

Bacteriophages produce endolysins, which lyse the bacterial host cell to release newly produced virions. The timing of lysis is regulated and is thought to involve the activation of a molecular switch. We present a crystal structure of the activated endolysin CTP1L that targets Clostridium tyrobutyricum, consisting of a complex between the full-length protein and an N-terminally truncated C-terminal cell wall binding domain (CBD). The truncated CBD is produced through an internal translation start site within the endolysin gene. Mutants affecting the internal translation site change the oligomeric state of the endolysin and reduce lytic activity. The activity can be modulated by reconstitution of the full-length endolysin-CBD complex with free CBD. The same oligomerization mechanism applies to the CD27L endolysin that targets Clostridium difficile and the CS74L endolysin that targets Clostridium sporogenes. When the CTP1L endolysin gene is introduced into the commensal bacterium Lactococcus lactis, the truncated CBD is also produced, showing that the alternative start codon can be used in other bacterial species. The identification of a translational switch affecting oligomerization presented here has implications for the design of effective endolysins for the treatment of bacterial infections.


Assuntos
Endopeptidases/química , Sequência de Aminoácidos , Bacteriófagos/enzimologia , Bacteriófagos/genética , Clostridium tyrobutyricum/efeitos dos fármacos , Códon de Iniciação , Endopeptidases/genética , Endopeptidases/metabolismo , Endopeptidases/toxicidade , Dados de Sequência Molecular , Mutação , Ligação Proteica , Multimerização Proteica
12.
Am J Physiol Heart Circ Physiol ; 312(4): H752-H767, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28130334

RESUMO

Calcium/calmodulin-dependent protein kinase II (CaMKII) regulates the principle ion channels mediating cardiac excitability and conduction, but how this regulation translates to the normal and ischemic heart remains unknown. Diverging results on CaMKII regulation of Na+ channels further prevent predicting how CaMKII activity regulates excitability and conduction in the intact heart. To address this deficiency, we tested the effects of the CaMKII blocker KN93 (1 and 2.75 µM) and its inactive analog KN92 (2.75 µM) on conduction and excitability in the left (LV) and right (RV) ventricles of rabbit hearts during normal perfusion and global ischemia. We used optical mapping to determine local conduction delays and the optical action potential (OAP) upstroke velocity (dV/dtmax). At baseline, local conduction delays were similar between RV and LV, whereas the OAP dV/dtmax was lower in RV than in LV. At 2.75 µM, KN93 heterogeneously slowed conduction and reduced dV/dtmax, with the largest effect in the RV outflow tract (RVOT). This effect was further exacerbated by ischemia, leading to recurrent conduction block in the RVOT and early ventricular fibrillation (at 6.7 ± 0.9 vs. 18.2 ± 0.8 min of ischemia in control, P < 0.0001). Neither KN92 nor 1 µM KN93 depressed OAP dV/dtmax or conduction. Rabbit cardiomyocytes isolated from RVOT exhibited a significantly lower dV/dtmax than those isolated from the LV. KN93 (2.75 µM) significantly reduced dV/dtmax in cells from both locations. This led to frequency-dependent intermittent activation failure occurring predominantly in RVOT cells. Thus CaMKII blockade exacerbates intrinsically lower excitability in the RVOT, which is proarrhythmic during ischemia.NEW & NOTEWORTHY We show that calcium/calmodulin-dependent protein kinase II (CaMKII) blockade exacerbates intrinsically lower excitability in the right ventricular outflow tract, which causes highly nonuniform chamber-specific slowing of conduction and facilitates ventricular fibrillation during ischemia. Constitutive CaMKII activity is necessary for uniform and safe ventricular conduction, and CaMKII block is potentially proarrhythmic.


Assuntos
Benzilaminas/farmacologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Circulação Coronária/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Sistema de Condução Cardíaco/efeitos dos fármacos , Coração/fisiopatologia , Isquemia Miocárdica/fisiopatologia , Sulfonamidas/farmacologia , Fibrilação Ventricular/fisiopatologia , Obstrução do Fluxo Ventricular Externo/fisiopatologia , Animais , Arritmias Cardíacas/fisiopatologia , Feminino , Técnicas In Vitro , Masculino , Potenciais da Membrana , Miócitos Cardíacos/efeitos dos fármacos , Coelhos , Obstrução do Fluxo Ventricular Externo/induzido quimicamente , Obstrução do Fluxo Ventricular Externo/diagnóstico por imagem
13.
Mol Cell Biochem ; 427(1-2): 81-89, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27995413

RESUMO

The estrogen-metabolizing activities of cytochrome P450 (CYP) enzymes have been implicated in endometriosis. However, their regulation in various sources of endometrial tissue under different hormonal conditions has not been clarified. Our objective was to study the hormone regulation of a specific CYP enzyme, namely CYP3A4, in control (n = 15) and endometriosis patients (n = 42). To this end, we evaluated mRNA expression (using real-time PCR) of CYP3A4 in tissue samples classified according to the phase of menstrual cycle at which they were obtained as confirmed by the related circulating hormone levels. Protein expression was also evaluated by Western Blot. In order to further investigate the hormonal regulation of CYP3A4, stromal cells from ovarian endometriotic lesions were cultured with the prevailing hormones of the distinct phases of the menstrual cycle. We observed that all control and endometriosis tissues express CYP3A4. Nevertheless, changes in CYP3A4 gene expression related to cycle phase were only seen in the control eutopic endometrium and not in samples from endometriosis patients, with an increase in the luteal phase. Stromal cells isolated from ovarian endometriotic lesions expressed CYP3A4 and their exposure to luteal phase-mimicking hormones (estradiol + progesterone) reduced CYP3A4 mRNA in parallel with a diminished expression of the corresponding receptors, estrogen receptor alpha and progesterone receptor. Our findings suggest that steroid hormones are able to regulate CYP3A4 mRNA expression, although the circulating levels of these hormones can only regulate control endometrium and not endometriosis tissues, probably because of dysregulated local steroid concentration in these latter samples.


Assuntos
Citocromo P-450 CYP3A/biossíntese , Endometriose/enzimologia , Endométrio/enzimologia , Regulação Enzimológica da Expressão Gênica , Hormônios Esteroides Gonadais/metabolismo , Ciclo Menstrual , Adulto , Endometriose/patologia , Endométrio/patologia , Feminino , Humanos
14.
Food Microbiol ; 66: 104-109, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28576357

RESUMO

The suitability of the biopreservation system formed by reuterin-producing L. reuteri INIA P572 and glycerol (required for reuterin production) to prevent late blowing defect (LBD) was evaluated in industrial sized semi-hard ewe milk cheese contaminated with Clostridium tyrobutyricum INIA 68, a wild strain isolated from a LBD cheese. For this purpose, six batches of cheese were made (three with and three without clostridial spores): control cheeses with lactococci starter, cheeses with L. reuteri as adjunct, and cheeses with L. reuteri and 30 mM glycerol. Spores of C. tyrobutyricum INIA 68 germinated during pressing of cheese curd, causing butyric acid fermentation in cheese after 30 d of ripening. The addition of L. reuteri, without glycerol, enhanced the symptoms and the formation of volatile compounds associated with LBD. When glycerol was added to cheese milk contaminated with C. tyrobutyricum, L. reuteri was able to produce reuterin in cheese resulting in cheeses with a uniform cheese matrix and a volatile profile similar to cheese made with L. reuteri and glycerol (without spores). Accordingly, L. reuteri INIA P572 coupled with glycerol seems a novel biopreservation system to inhibit Clostridium growth and prevent LBD by means of in situ reuterin production.


Assuntos
Queijo/microbiologia , Clostridium tyrobutyricum/crescimento & desenvolvimento , Conservação de Alimentos/métodos , Conservantes de Alimentos/farmacologia , Glicerol/farmacologia , Limosilactobacillus reuteri/fisiologia , Leite/microbiologia , Animais , Antibiose , Indústria de Processamento de Alimentos , Ovinos
15.
Plant Biotechnol J ; 14(2): 463-70, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26402400

RESUMO

Single-stranded oligonucleotides (ssODNs) can be used to direct the exchange of a single nucleotide or the repair of a single base within the coding region of a gene in a process that is known, generically, as gene editing. These molecules are composed of either all DNA residues or a mixture of RNA and DNA bases and utilize inherent metabolic functions to execute the genetic alteration within the context of a chromosome. The mechanism of action of gene editing is now being elucidated as well as an understanding of its regulatory circuitry, work that has been particularly important in establishing a foundation for designing effective gene editing strategies in plants. Double-strand DNA breakage and the activation of the DNA damage response pathway play key roles in determining the frequency with which gene editing activity takes place. Cellular regulators respond to such damage and their action impacts the success or failure of a particular nucleotide exchange reaction. A consequence of such activation is the natural slowing of replication fork progression, which naturally creates a more open chromatin configuration, thereby increasing access of the oligonucleotide to the DNA template. Herein, how critical reaction parameters influence the effectiveness of gene editing is discussed. Functional interrelationships between DNA damage, the activation of DNA response pathways and the stalling of replication forks are presented in detail as potential targets for increasing the frequency of gene editing by ssODNs in plants and plant cells.


Assuntos
DNA de Cadeia Simples/genética , Edição de Genes , Oligonucleotídeos/genética , Replicação do DNA/genética , Células Vegetais/metabolismo , Plantas/genética
16.
Reproduction ; 151(6): 683-92, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27012269

RESUMO

Endometriosis is an estrogen-dependent disease affecting up to 10% of all premenopausal women. There is evidence that different endometriosis sites show distinct local estrogen concentration, which, in turn, might be due to a unique local estrogen metabolism. We aimed to investigate whether there was a site-specific regulation of selected enzymes responsible for the oxidative metabolism of estrogens in biopsy samples and endometrial and endometriotic stromal cells. Cytochrome P450 (CYP) 1A1 and CYP1B1 mRNA and protein expressions in deep-infiltrating (rectal, retossigmoidal, and uterossacral) lesions, superficial (ovarian and peritoneal) lesions, and eutopic and healthy (control) endometrium were evaluated by real-time PCR and western blot. Using a cross-sectional study design with 58 premenopausal women who were not under hormonal treatment, we were able to identify an overall increased CYP1A1 and CYP1B1 mRNA expression in superficial lesions compared with the healthy endometrium. CYP1A1 mRNA expression in superficial lesions was also greater than in the eutopic endometrium. Interestingly, we found a similar pattern of CYP1A1 and CYP1B1 expression in in vitro stromal cells isolated from ovarian lesions (n=3) when compared with stromal cells isolated from either rectum lesions or eutopic endometrium. In contradiction, there was an increased half-life of estradiol (measured by HPLC-MS-MS) in ovarian endometriotic stromal cells compared with paired eutopic stromal endometrial cells. Our results indicate that there is a site-dependent regulation of CYP1A1 and CYP1B1 in ovarian/peritoneal lesions and ovarian endometriotic stromal cells, whereas a slower metabolism is taking place in these cells.


Assuntos
Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1B1/genética , Endometriose/genética , Endométrio/metabolismo , Doenças Ovarianas/genética , Doenças Peritoneais/genética , Adulto , Estudos de Casos e Controles , Estudos Transversais , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1B1/metabolismo , Endometriose/metabolismo , Feminino , Humanos , Doenças Ovarianas/metabolismo , Doenças Peritoneais/metabolismo
17.
Food Microbiol ; 60: 165-73, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27554159

RESUMO

In this study we evaluated the application of different high pressure (HP) treatments (200-500 MPa at 14 °C for 10 min) to industrial sized semi-hard cheeses on day 7, with the aim of controlling two Clostridium tyrobutyricum strains causing butyric acid fermentation and cheese late blowing defect (LBD). Clostridium metabolism and LBD appearance in cheeses were monitored by sensory (cheese swelling, cracks/splits, off-odours) and instrumental analyses (organic acids by HPLC and volatile compounds by SPME/GC-MS) after 60 days. Cheeses with clostridial spores HP-untreated and HP-treated at 200 MPa showed visible LBD symptoms, lower concentrations of lactic, citric and acetic acids, and higher levels of pyruvic, propionic and butyric acids and of 1-butanol, ethyl and methyl butanoate, and ethyl pentanoate than cheeses without spores. However, cheeses with clostridial spores and HP-treated at ≥ 300 MPa did not show LBD symptoms and their organic acids and volatile compounds profiles were comparable to those of their respective HP-treated control cheeses, despite HP treatments caused a low spore reduction. A decrease in C. tyrobutyricum spore counts was observed after curd pressing, which seems to indicate an early spore germination, suggesting that HP treatments ≥300 MPa were able to inactivate the emerged C. tyrobutyricum vegetative cells and, thereby, prevent LBD.


Assuntos
Queijo/microbiologia , Clostridium tyrobutyricum/fisiologia , Manipulação de Alimentos/métodos , Conservação de Alimentos/métodos , Ácido Butírico/metabolismo , Queijo/análise , Clostridium tyrobutyricum/crescimento & desenvolvimento , Contagem de Colônia Microbiana , DNA Bacteriano/análise , Microbiologia de Alimentos , Viabilidade Microbiana , Pressão , Esporos Bacterianos/fisiologia
18.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 8): 1745-56, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26249355

RESUMO

Biocatalytic CO2 sequestration to reduce greenhouse-gas emissions from industrial processes is an active area of research. Carbonic anhydrases (CAs) are attractive enzymes for this process. However, the most active CAs display limited thermal and pH stability, making them less than ideal. As a result, there is an ongoing effort to engineer and/or find a thermostable CA to fulfill these needs. Here, the kinetic and thermal characterization is presented of an α-CA recently discovered in the mesophilic hydrothermal vent-isolate extremophile Thiomicrospira crunogena XCL-2 (TcruCA), which has a significantly higher thermostability compared with human CA II (melting temperature of 71.9°C versus 59.5°C, respectively) but with a tenfold decrease in the catalytic efficiency. The X-ray crystallographic structure of the dimeric TcruCA shows that it has a highly conserved yet compact structure compared with other α-CAs. In addition, TcruCA contains an intramolecular disulfide bond that stabilizes the enzyme. These features are thought to contribute significantly to the thermostability and pH stability of the enzyme and may be exploited to engineer α-CAs for applications in industrial CO2 sequestration.


Assuntos
Dióxido de Carbono/metabolismo , Anidrases Carbônicas/química , Anidrases Carbônicas/metabolismo , Gammaproteobacteria/química , Gammaproteobacteria/enzimologia , Biocatálise , Anidrases Carbônicas/genética , Domínio Catalítico , Cristalografia por Raios X , Estabilidade Enzimática , Gammaproteobacteria/genética , Humanos , Modelos Moleculares , Conformação Proteica , Engenharia de Proteínas , Multimerização Proteica , Temperatura
19.
Bioorg Med Chem Lett ; 25(21): 4937-4940, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25998503

RESUMO

Thiomicrospira crunogena XCL-2 expresses an α-carbonic anhydrase (TcruCA). Sequence alignments reveal that TcruCA displays a high sequence identity (>30%) relative to other α-CAs. This includes three conserved histidines that coordinate the active site zinc, a histidine proton shuttling residue, and opposing hydrophilic and hydrophobic sides that line the active site. The catalytic efficiency of TcruCA is considered moderate relative to other α-CAs (k(cat)/K(M)=1.1×10(7) M(-1) s(-1)), being a factor of ten less efficient than the most active α-CAs. TcruCA is also inhibited by anions with Cl(-), Br(-), and I(-), all showing Ki values in the millimolar range (53-361 mM). Hydrogen sulfide (HS(-)) revealed the highest affinity for TcruCA with a Ki of 1.1 µM. It is predicted that inhibition of TcruCA by HS(-) (an anion commonly found in the environment where Thiomicrospira crunogena is located) is a way for Thiomicrospira crunogena to regulate its carbon-concentrating mechanism (CCM) and thus the organism's metabolic functions. Results from this study provide preliminary insights into the role of TcruCA in the general metabolism of Thiomicrospira crunogena.


Assuntos
Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/metabolismo , Gammaproteobacteria/enzimologia , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/química , Relação Dose-Resposta a Droga , Estrutura Molecular , Relação Estrutura-Atividade
20.
Mem Inst Oswaldo Cruz ; 110(4): 560-5, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26018449

RESUMO

A rapid decrease in parasitaemia remains the major goal for new antimalarial drugs and thus, in vivo models must provide precise results concerning parasitaemia modulation. Hydroxyethylamine comprise an important group of alkanolamine compounds that exhibit pharmacological properties as proteases inhibitors that has already been proposed as a new class of antimalarial drugs. Herein, it was tested the antimalarial property of new nine different hydroxyethylamine derivatives using the green fluorescent protein (GFP)-expressing Plasmodium berghei strain. By comparing flow cytometry and microscopic analysis to evaluate parasitaemia recrudescence, it was observed that flow cytometry was a more sensitive methodology. The nine hydroxyethylamine derivatives were obtained by inserting one of the following radical in the para position: H, 4Cl, 4-Br, 4-F, 4-CH3, 4-OCH3, 4-NO2, 4-NH2 and 3-Br. The antimalarial test showed that the compound that received the methyl group (4-CH3) inhibited 70% of parasite growth. Our results suggest that GFP-transfected P. berghei is a useful tool to study the recrudescence of novel antimalarial drugs through parasitaemia examination by flow cytometry. Furthermore, it was demonstrated that the insertion of a methyl group at the para position of the sulfonamide ring appears to be critical for the antimalarial activity of this class of compounds.


Assuntos
Antimaláricos/uso terapêutico , Malária/tratamento farmacológico , Parasitemia/tratamento farmacológico , Plasmodium berghei/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Citometria de Fluxo , Proteínas de Fluorescência Verde , Técnicas In Vitro , Malária/parasitologia , Camundongos , Parasitemia/parasitologia , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA