Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Data Brief ; 25: 104370, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31463351

RESUMO

Sensitizers are being used to improve the photocatalytic activity of semiconductors in the visible light region of the solar spectrum. Different types of dyes are reported as sensitizer agents, such as ruthenium complex molecules, porphyrins and Pt complexes, which are critically assessed because they are hazardous substance. Therefore, it is necessary to replace these compounds with safer sensitizer like organic dyes. This work evaluated the photocatalytic degradation of diclofenac using two different types of organic dyes (Perinaphtenone and Eosin-Y) as sensitizer agents. The catalyst concentration [0.15; 0.35 g/l], source of light (UVA - Vis) and type of dye were evaluated. The data obtained can be useful to classify organic dyes that could be employees as sensitizers and which is the wavelength more adequate to use as an energy source. The Kapp for the reaction has values between 1*10-3 to 5*10-3 min-1 for UVA, 3*10-4 to 3*10-3 min-1 for Vis and 2*10-3 to 6*10-3 min-1 for UV-Vis.

2.
Water Res ; 42(16): 4243-8, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18789474

RESUMO

The application of ultrasound (US) waves for remediation of wastewater is an area of increasing interest and promising results. The aim of this paper is to evaluate the influence of several parameters of the US process on the degradation of ibuprofen (IBP), a widely used non-steroidal anti-inflammatory recalcitrant drug found in water. Applied US power, dissolved gas, pH and initial concentration of IBP were the parameters investigated under sonication (300 kHz). Ultrasound increased the degradation of IBP from 30 to 98% in 30 min. Initial rate of IBP degradation was evaluated in the range of 1.35 and 6.1 micromolL(-1)min(-1) for initial concentrations of 2 to 21 mgL(-1) or 9.7 micromolL(-1) to 101 micromolL(-1), respectively. Under air and oxygen the degradation rate of IBP was 4 micromolL(-1)min(-1) being higher than that when argon was used. The most favorable degradation pH was acidic media. Complete removal of IBP was achieved but some dissolved organic carbon (DOC) remained in solution showing that long-lived intermediates were recalcitrant to the US irradiation. However, chemical and biological oxygen demands (COD and BOD(5)) indicated that the process oxidize the ibuprofen compound to biodegradable substances removable in a subsequent biological step.


Assuntos
Ibuprofeno/química , Ultrassom , Poluentes Químicos da Água/química , Purificação da Água/métodos , Água/química , Anti-Inflamatórios não Esteroides/química , Poluição Química da Água/prevenção & controle
3.
Water Res ; 43(16): 3984-91, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19631960

RESUMO

Degradation of the biorecalcitrant pharmaceutical micropollutant ibuprofen (IBP) was carried out by means of several advanced oxidation hybrid configurations. TiO(2) photocatalysis, photo-Fenton and sonolysis - all of them under solar simulated illumination - were tested in the hybrid systems: sonophoto-Fenton (FS), sonophotocatalysis (TS) and TiO(2)/Fe(2+)/sonolysis (TFS). In the case of the sonophoto-Fenton process, the IBP degradation (95%) and mineralization (60%) were attained with photo-Fenton (FH). The presence of ultrasonic irradiation slightly improves the iron catalytic activity. On the other hand, total removal of IBP and elimination of more than 50% of dissolved organic carbon (DOC) were observed by photocatalysis with TiO(2) in the presence of ultrasound irradiation (TS). In contrast only 26% of mineralization was observed by photocatalysis with H(2)O(2) (TH) in the absence of ultrasound irradiation. Additional results showed that, in the TFS system, 92% of DOC removal and complete degradation of IBP were obtained within 240 min of treatment. The advanced oxidation hybrid systems seems to be a promising alternative for full elimination/mineralization for the recalcitrant micro-contaminant IBP.


Assuntos
Ibuprofeno/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Peróxido de Hidrogênio/química , Ibuprofeno/análise , Ferro/química , Oxirredução , Fotólise , Titânio/química , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA