Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Microbiology (Reading) ; 167(10)2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34623231

RESUMO

Most uropathogenic Escherichia coli (UPEC) express type-1 fimbriae (T1F), a key virulence factor for urinary tract infection (UTI) in mice. Evidence that conclusively associates this pilus with uropathogenesis in humans has, however, been difficult to obtain. We used an experimental porcine model of cystitis to assess the role of T1F in larger mammals more closely related to humans. Thirty-one pigs were infected with UPEC strain UTI89 or its T1F deficient mutant, UTI89ΔfimH, at inoculum titres of 102 to 108 colony forming units per millilitre. Urine and blood samples were collected and analysed 7 and 14 days post-inoculation, and whole bladders were removed at day 14 and analysed for uroepithelium-associated UPEC. All animals were consistently infected and reached high urine titres independent of inoculum titre. UTI89ΔfimH successfully colonized the bladders of 1/6 pigs compared to 6/6 for the wild-type strain. Intracellular UPEC were detectable in low numbers in whole bladder explants. In conclusion, low doses of UPEC are able to establish robust infections in pigs, similar to what is presumed in humans. T1F are critical for UPEC to surpass initial bottlenecks during infection but may be dispensable once infection is established. While supporting the conclusions from mice studies regarding a general importance of T1F in successfully infecting the host, the porcine UTI models' natural high, more human-like, susceptibility to infection, allowed us to demonstrate a pivotal role of T1F in initial establishment of infection upon a realistic low-inoculum introduction of UPEC in the bladder.


Assuntos
Cistite/microbiologia , Infecções por Escherichia coli/microbiologia , Fímbrias Bacterianas/metabolismo , Infecções Urinárias/microbiologia , Escherichia coli Uropatogênica/patogenicidade , Fatores de Virulência/metabolismo , Animais , Anticorpos Antibacterianos/sangue , Carga Bacteriana , Contagem de Colônia Microbiana , Modelos Animais de Doenças , Fímbrias Bacterianas/genética , Fímbrias Bacterianas/imunologia , Gentamicinas/farmacologia , Viabilidade Microbiana/efeitos dos fármacos , Mutação , Suínos , Bexiga Urinária/microbiologia , Escherichia coli Uropatogênica/efeitos dos fármacos , Escherichia coli Uropatogênica/genética , Escherichia coli Uropatogênica/imunologia , Fatores de Virulência/genética
2.
Nucleic Acids Res ; 43(10): 4923-36, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25925568

RESUMO

The Mycoplasma genitalium MG428 protein shows homology to members of the sigma-70 family of sigma factors. Herein, we found that MG428 activates transcription of recA, ruvA and ruvB as well as several genes with unknown function. Deletion of MG_428 or some of the up-regulated unknown genes led to severe recombination defects. Single cell analyses revealed that activation of the MG428-regulon is a rare event under laboratory growth conditions. A conserved sequence with sigma-70 promoter architecture (TTGTCA-N(18/19)-ATTWAT) was identified in the upstream region of all of the MG428-regulated genes or operons. Primer extension analyses demonstrated that transcription initiates immediately downstream of this sigma70-type promoter in a MG428-dependent manner. Furthermore, mutagenesis of the conserved -10 and -35 elements corroborated the requirement of these regions for promoter function. Therefore, a new mycoplasma promoter directs transcription of a unique recombination regulon. Additionally, MG428 was found to interact with the RNAP core enzyme, reinforcing the predicted role of this protein as an alternative sigma factor. Finally, our results indicate that MG428 contributes to the generation of genetic diversity in this model organism. Since recombination is an important mechanism to generate antigenic variation, MG428 emerges as a novel factor contributing to M. genitalium virulence.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Mycoplasma genitalium/genética , Recombinação Genética , Regulon , Fator sigma/metabolismo , Proteínas de Bactérias/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Expressão Gênica , Variação Genética , Mutação , Regiões Promotoras Genéticas , Recombinases Rec A/metabolismo , Fator sigma/genética
3.
Commun Biol ; 7(1): 779, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38942984

RESUMO

The Mycoplasma Immunoglobulin Binding/Protease (MIB-MIP) system is a candidate 'virulence factor present in multiple pathogenic species of the Mollicutes, including the fast-growing species Mycoplasma feriruminatoris. The MIB-MIP system cleaves the heavy chain of host immunoglobulins, hence affecting antigen-antibody interactions and potentially facilitating immune evasion. In this work, using -omics technologies and 5'RACE, we show that the four copies of the M. feriruminatoris MIB-MIP system have different expression levels and are transcribed as operons controlled by four different promoters. Individual MIB-MIP gene pairs of M. feriruminatoris and other Mollicutes were introduced in an engineered M. feriruminatoris strain devoid of MIB-MIP genes and were tested for their functionality using newly developed oriC-based plasmids. The two proteins are functionally expressed at the surface of M. feriruminatoris, which confirms the possibility to display large membrane-associated proteins in this bacterium. However, functional expression of heterologous MIB-MIP systems introduced in this engineered strain from phylogenetically distant porcine Mollicutes like Mesomycoplasma hyorhinis or Mesomycoplasma hyopneumoniae could not be achieved. Finally, since M. feriruminatoris is a candidate for biomedical applications such as drug delivery, we confirmed its safety in vivo in domestic goats, which are the closest livestock relatives to its native host the Alpine ibex.


Assuntos
Vacinas Bacterianas , Mycoplasma , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/genética , Mycoplasma/genética , Mycoplasma/imunologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Imunoglobulinas/genética , Imunoglobulinas/metabolismo , Imunoglobulinas/imunologia , Regulação Bacteriana da Expressão Gênica , Infecções por Mycoplasma/veterinária , Infecções por Mycoplasma/microbiologia , Infecções por Mycoplasma/imunologia , Infecções por Mycoplasma/prevenção & controle , Cabras
4.
Microbiol Spectr ; 12(2): e0292423, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38206027

RESUMO

Animal shelters, especially in resource-poor countries, bring together pets from different regions and with different backgrounds. The crowding of such animals often results in infectious diseases, such as respiratory infections. This study characterized Staphylococcaceae from diseased and apparently healthy dogs housed in an animal shelter in Kenya, to determine their antibiotic resistance profiles, their genetic relatedness, and the presence of dominant clones. Therefore, bacteria were collected from all 167 dogs present in the shelter in June 2015 and screened for Staphylococcaceae using standard cultivation techniques. In all, 92 strains were isolated from 85 dogs and subsequently sequenced by PacBio long-read sequencing. Strains encompassed nine validated species, while S. aureus (n = 47), S. pseudintermedius (n = 21), and Mammaliicoccus (M.) sciuri (n = 16) were the three most dominant species. Two S. aureus clones of ST15 (CC15) and ST1292 (CC1) were isolated from 7 and 37 dogs, respectively. All 92 strains isolated were tested for their antimicrobial susceptibility by determining the minimum inhibitory concentrations. In all, 86 strains had resistance-associated minimal inhibitory concentrations to at least one of the following antimicrobials: tetracycline, benzylpenicillin, oxacillin, erythromycin, clindamycin, trimethoprim, kanamycin/gentamicin, or streptomycin. Many virulence-encoding genes were detected in the S. aureus strains, other Staphylococcaceae contained a different set of homologs of such genes. The presence of mobile genetic elements, such as plasmids and prophages, known to facilitate the dissemination of virulence- and resistance-encoding genes, was also assessed. The unsuspected high presence of two S. aureus clones in about 50% of dogs suggests dissemination within the shelter and a human source.IMPORTANCEMicrobiological data from sub-Saharan Africa are scarce compared to data from North America, Europe, or Asia, and data derived from dogs, the man's best friend, kept in sub-Saharan Africa are largely missing. This work presents data on Staphylococcaceae mainly isolated from the nasal cavity of dogs stationed at a Kenyan shelter in 2015. We characterized 92 strains isolated from 85 dogs, diseased and apparently healthy ones. The strains isolated covered nine validated species and we determined their phenotypic resistance and characterized their complete genomes. Interestingly, Staphylococcus aureus of two predominant genetic lineages, likely to be acquired from humans, colonized many dogs. We also detected 15 novel sequence types of Mammaliicoccus sciuri and S. pseudintermedius indicating sub-Saharan-specific phylogenetic lineages. The data presented are baseline data that guide antimicrobial treatment for dogs in the region.


Assuntos
Doenças do Cão , Infecções Estafilocócicas , Animais , Cães , Humanos , Staphylococcus aureus/genética , Quênia , Staphylococcaceae , Filogenia , Antibacterianos/farmacologia , Infecções Estafilocócicas/microbiologia , Testes de Sensibilidade Microbiana , Doenças do Cão/microbiologia
5.
Front Cell Infect Microbiol ; 12: 824039, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35237532

RESUMO

Uropathogenic Escherichia coli (UPEC) is the main etiological agent of urinary tract infection (UTI), a widespread infectious disease of great impact on human health. This is further emphasized by the rapidly increase in antimicrobial resistance in UPEC, which compromises UTI treatment. UPEC biology is highly complex since uropathogens must adopt extracellular and intracellular lifestyles and adapt to different niches in the host. In this context, the implementation of forefront 'omics' technologies has provided substantial insight into the understanding of UPEC pathogenesis, which has opened the doors for new therapeutics and prophylactics discovery programs. Thus, 'omics' technologies applied to studies of UPEC during UTI, or in models of UTI, have revealed extensive lists of factors that are important for the ability of UPEC to cause disease. The multitude of large 'omics' datasets that have been generated calls for scrutinized analysis of specific factors that may be of interest for further development of novel treatment strategies. In this review, we describe main UPEC determinants involved in UTI as estimated by 'omics' studies, and we compare prediction of factors across the different 'omics' technologies, with a focus on those that have been confirmed to be relevant under UTI-related conditions. We also discuss current challenges and future perspectives regarding analysis of data to provide an overview and better understanding of UPEC mechanisms involved in pathogenesis which should assist in the selection of target sites for future prophylaxis and treatment.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Infecções Urinárias , Sistema Urinário , Escherichia coli Uropatogênica , Adaptação Fisiológica , Proteínas de Escherichia coli/genética , Humanos , Virulência
6.
Microbiol Res ; 257: 126974, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35091344

RESUMO

Emergence of antibiotic resistant bacteria is evolving at an alarming pace; therefore, we must start turning to alternative approaches. One of these, could be the use of antibiotic adjuvants that enhances the effect of antibiotics towards resistant bacteria. A novel antibiotic adjuvant is cannabidiol (CBD), which we have previously shown can enhance the effect of bacitracin (BAC). BAC targets cell wall synthesis by inhibiting dephosphorylation of the lipid carrier undecaprenyl pyrophosphate prior to recycling across the membrane. However, the mechanism underlying this CBD mediated potentiation of BAC has remained unknown. To explore this, we examined resistance to CBD in Staphylococcus aureus through daily exposures to CBD. By subsequent whole genome sequencing, we observed multiple genes to be mutated, including the farE/farR system encoding a fatty acid efflux pump (FarE) and its regulator (FarR). Importantly, recreation of mutations in these genes showed decreased susceptibility towards the combination of CBD and BAC. Furthermore, we searched the Nebraska Transposon Mutant Library for CBD susceptible strains and identified menH encoding a protein participating in menaquinone biosynthesis. Strains containing deletions in this and other menaquinone related genes showed increased susceptibility towards CBD, while addition of exogenous menaquinone reversed the effect and reduced susceptible towards CBD. These results suggest that CBD potentiates BAC by redirecting the isoprenoid precursor isopentenyl pyrophosphate towards production of menaquinone rather than the lipid carrier undecaprenyl pyrophosphate, which dephosphorylation is inhibited by BAC. This in turn might decrease the level of undecaprenyl pyrophosphate thus enhancing the effect of BAC. Our study illustrates how antibiotic adjuvants may apply to enhance efficacy of antimicrobial compounds.


Assuntos
Canabidiol , Staphylococcus aureus , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Vitamina K 2
7.
Trends Microbiol ; 29(6): 477-481, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33593698

RESUMO

Mycoplasma genitalium (Mge) and Mycoplasma pneumoniae (Mpn) are two human pathogens associated with urogenital and respiratory tract infections, respectively. The recent elucidation of the tridimensional structure of their major cytoadhesins by X-ray crystallography and cryo-electron microscopy/tomography, has provided important insights regarding the mechanics of infection and evasion of immune surveillance.


Assuntos
Adesinas Bacterianas/química , Adesinas Bacterianas/metabolismo , Glicoproteínas/metabolismo , Mycoplasma genitalium/química , Mycoplasma pneumoniae/química , Microscopia Crioeletrônica , Cristalografia por Raios X , Humanos , Evasão da Resposta Imune , Mycoplasma genitalium/metabolismo , Mycoplasma genitalium/patogenicidade , Mycoplasma pneumoniae/metabolismo , Mycoplasma pneumoniae/patogenicidade , Ácido N-Acetilneuramínico/química , Ácido N-Acetilneuramínico/metabolismo
8.
Front Microbiol ; 12: 695572, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34589065

RESUMO

It is well-established that FtsZ drives peptidoglycan synthesis at the division site in walled bacteria. However, the function and conservation of FtsZ in wall-less prokaryotes such as mycoplasmas are less clear. In the genome-reduced bacterium Mycoplasma genitalium, the cell division gene cluster is limited to four genes: mraZ, mraW, MG_223, and ftsZ. In a previous study, we demonstrated that ftsZ was dispensable for growth of M. genitalium under laboratory culture conditions. Herein, we show that the entire cell division gene cluster of M. genitalium is non-essential for growth in vitro. Our analyses indicate that loss of the mraZ gene alone is more detrimental for growth of M. genitalium than deletion of ftsZ or the entire cell division gene cluster. Transcriptional analysis revealed a marked upregulation of ftsZ in the mraZ mutant. Stable isotope labeling by amino acids in cell culture (SILAC)-based proteomics confirmed the overexpression of FtsZ in MraZ-deprived cells. Of note, we found that ftsZ expression was upregulated in non-adherent cells of M. genitalium, which arise spontaneously at relatively high rates. Single cell analysis using fluorescent markers showed that FtsZ localization varied throughout the cell cycle of M. genitalium in a coordinated manner with the chromosome and the terminal organelle (TMO). In addition, our results indicate a possible role for the RNA methyltransferase MraW in the regulation of FtsZ expression at the post-transcriptional level. Altogether, this study provides an extensive characterization of the cell division gene cluster of M. genitalium and demonstrates the existence of regulatory elements controlling FtsZ expression at the temporal and spatial level in mycoplasmas.

9.
Microb Genom ; 7(12)2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34928200

RESUMO

Uropathogenic Escherichia coli (UPEC) UTI89 is a well-characterized strain, which has mainly been used to study UPEC virulence during urinary tract infection (UTI). However, little is known on UTI89 key fitness-factors during growth in lab media and during UTI. Here, we used a transposon-insertion-sequencing approach (TraDIS) to reveal the UTI89 essential-genes for in vitro growth and fitness-gene-sets for growth in Luria broth (LB) and EZ-MOPS medium without glucose, as well as for human bacteriuria and mouse cystitis. A total of 293 essential genes for growth were identified and the set of fitness-genes was shown to differ depending on the growth media. A modified, previously validated UTI murine model, with administration of glucose prior to infection was applied. Selected fitness-genes for growth in urine and mouse-bladder colonization were validated using deletion-mutants. Novel fitness-genes, such as tusA, corA and rfaG; involved in sulphur-acquisition, magnesium-uptake, and LPS-biosynthesis, were proved to be important during UTI. Moreover, rfaG was confirmed as relevant in both niches, and therefore it may represent a target for novel UTI-treatment/prevention strategies.


Assuntos
Bacteriúria/microbiologia , Meios de Cultura/química , Cistite/microbiologia , Genes Essenciais , Glucose/administração & dosagem , Análise de Sequência de DNA/métodos , Escherichia coli Uropatogênica/crescimento & desenvolvimento , Animais , Técnicas Bacteriológicas , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Aptidão Genética , Glucose/química , Glucose/farmacologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Camundongos , Mutagênese Insercional , Escherichia coli Uropatogênica/classificação , Escherichia coli Uropatogênica/genética , Fatores de Virulência/genética
10.
Emerg Microbes Infect ; 9(1): 5-19, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31859607

RESUMO

Transition metals participate in numerous enzymatic reactions and they are essential for survival in all living organisms. For this reason, bacterial pathogens have evolved dedicated machineries to effectively compete with their hosts and scavenge metals at the site of infection. In this study, we investigated the mechanisms controlling metal acquisition in the emerging human pathogen Mycoplasma genitalium. We observed a robust transcriptional response to metal starvation, and many genes coding for predicted lipoproteins and ABC-transporters were significantly up-regulated. Transcriptional analysis of a mutant strain lacking a metalloregulator of the Fur family revealed the activation of a full operon encoding a putative metal transporter system and a gene coding for a Histidine-rich lipoprotein (Hrl). We recognized a conserved sequence with dyad symmetry within the promoter region of the Fur-regulated genes. Mutagenesis of the predicted Fur operator within the hrl promoter abrogated Fur- and metal-dependent expression of a reporter gene. Metal starvation still impelled a strong transcriptional response in the fur mutant, demonstrating the existence of Fur-independent regulatory pathways controlling metal homeostasis. Finally, analysis of metal accumulation in the wild-type strain and the fur mutant by ICP-MS revealed an important role of Fur in nickel acquisition.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Ferro/metabolismo , Mycoplasma genitalium/metabolismo , Proteínas Repressoras/metabolismo , Transcrição Gênica , 2,2'-Dipiridil/farmacologia , Sequência de Aminoácidos , Proteínas de Bactérias/química , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Homeostase , Modelos Moleculares , Mycoplasma genitalium/genética , Regiões Promotoras Genéticas , Proteômica , Proteínas Repressoras/química , Transcrição Gênica/efeitos dos fármacos
11.
Nat Commun ; 11(1): 2877, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32513917

RESUMO

Mycoplasma genitalium is a human pathogen adhering to host target epithelial cells and causing urethritis, cervicitis and pelvic inflammatory disease. Essential for infectivity is a transmembrane adhesion complex called Nap comprising proteins P110 and P140. Here we report the crystal structure of P140 both alone and in complex with the N-terminal domain of P110. By cryo-electron microscopy (cryo-EM) and tomography (cryo-ET) we find closed and open Nap conformations, determined at 9.8 and 15 Å, respectively. Both crystal structures and the cryo-EM structure are found in a closed conformation, where the sialic acid binding site in P110 is occluded. By contrast, the cryo-ET structure shows an open conformation, where the binding site is accessible. Structural information, in combination with functional studies, suggests a mechanism for attachment and release of M. genitalium to and from the host cell receptor, in which Nap conformations alternate to sustain motility and guarantee infectivity.


Assuntos
Aderência Bacteriana , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Mycoplasma genitalium/metabolismo , Proteínas de Bactérias/ultraestrutura , Sítios de Ligação , Cristalografia por Raios X , Humanos , Mutação/genética , Domínios Proteicos , Multimerização Proteica , Estrutura Secundária de Proteína , Relação Estrutura-Atividade
13.
Nat Commun ; 9(1): 4471, 2018 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-30367053

RESUMO

Adhesion of pathogenic bacteria to target cells is a prerequisite for colonization and further infection. The main adhesins of the emerging sexually transmitted pathogen Mycoplasma genitalium, P140 and P110, interact to form a Nap complex anchored to the cell membrane. Herein, we present the crystal structures of the extracellular region of the virulence factor P110 (916 residues) unliganded and in complex with sialic acid oligosaccharides. P110 interacts only with the neuraminic acid moiety of the oligosaccharides and experiments with human cells demonstrate that these interactions are essential for mycoplasma cytadherence. Additionally, structural information provides a deep insight of the P110 antigenic regions undergoing programmed variation to evade the host immune response. These results enlighten the interplay of M. genitalium with human target cells, offering new strategies to control mycoplasma infections.


Assuntos
Adesinas Bacterianas/metabolismo , Infecções por Mycoplasma/fisiopatologia , Mycoplasma genitalium/fisiologia , Receptores de Superfície Celular/metabolismo , Fatores de Virulência/metabolismo , Adesinas Bacterianas/química , Adesinas Bacterianas/genética , Sítios de Ligação/genética , Membrana Celular/metabolismo , Eritrócitos/metabolismo , Eritrócitos/microbiologia , Hemadsorção/genética , Humanos , Modelos Moleculares , Mutação , Infecções por Mycoplasma/metabolismo , Mycoplasma genitalium/genética , Potássio/metabolismo , Ligação Proteica , Conformação Proteica , Receptores de Superfície Celular/química , Fatores de Virulência/química , Fatores de Virulência/genética
14.
DNA Res ; 25(4): 383-393, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29659762

RESUMO

In the human pathogen Mycoplasma genitalium, homologous recombination is under the control of σ20, an alternative sigma factor that boosts the generation of genetic and antigenic diversity in the population. Under laboratory growth conditions, σ20 activation is rare and the factors governing its intermittent activity are unknown. Two σ20-regulated genes, rrlA and rrlB, showed to be important for recombination of homologous DNA sequences in this bacterium. Herein, we demonstrate that rrlA and rrlB code for two small proteins that participate in a feed-forward loop essential for σ20 function. In addition, we identify novel genes regulated by σ20 and show that several non-coding regions, which function as a reservoir for the generation of antigenic diversity, are also activated by this alternative sigma factor. Finally, we reveal that M. genitalium cells can transfer DNA horizontally by a novel mechanism that requires RecA and is facilitated by σ20 over-expression. This DNA transfer system is arguably fundamental for persistence of M. genitalium within the host since it could facilitate a rapid dissemination of successful antigenic variants within the population. Overall, these findings impose a novel conception of genome evolution, genetic variation and survival of M. genitalium within the host.


Assuntos
Transferência Genética Horizontal , Recombinação Homóloga , Mycoplasma genitalium/genética , Fator sigma/metabolismo , Proteínas de Bactérias , DNA Bacteriano/metabolismo , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Variação Genética , Mycoplasma genitalium/metabolismo , Recombinases Rec A/metabolismo , Fator sigma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA