Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36674675

RESUMO

Worldwide, there is a great gap between the demand and supply of organs for transplantations. Organs generated from the patients' cells would not only solve the problem of transplant availability but also overcome the complication of incompatibility and tissue rejection by the host immune system. One of the most promising methods tested for the production of organs in vivo is blastocyst complementation (BC). Regrettably, BC is not suitable for the creation of hearts. We have developed a novel method, induced blastocyst complementation (iBC), to surpass this shortcoming. By applying iBC, we generated chimeric mouse embryos, made up of "host" and "donor" cells. We used a specific cardiac enhancer to drive the expression of the diphtheria toxin gene (dtA) in the "host" cells, so that these cells are depleted from the developing hearts, which now consist of "donor" cells. This is a proof-of-concept study, showing that it is possible to produce allogeneic and ultimately, xenogeneic hearts in chimeric organisms. The ultimate goal is to generate, in the future, human hearts in big animals such as pigs, from the patients' cells, for transplantations. Such a system would generate transplants in a relatively short amount of time, improving the quality of life for countless patients around the world.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Células-Tronco Pluripotentes , Camundongos , Animais , Humanos , Suínos , Qualidade de Vida , Blastocisto/metabolismo , Coração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA