Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev E ; 107(5): L052801, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37329075

RESUMO

We investigate analytically and computationally the dynamics of two-dimensional needle crystal growth from the melt in a narrow channel. Our analytical theory predicts that, in the low supersaturation limit, the growth velocity V decreases in time t as a power law V∼t^{-2/3}, which we validate by phase-field and dendritic-needle-network simulations. Simulations further reveal that, above a critical channel width Λ≈5l_{D}, where l_{D} is the diffusion length, needle crystals grow with a constant V

Assuntos
Cristalização , Difusão
2.
Nat Commun ; 14(1): 2244, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37076477

RESUMO

Spatially extended cellular and dendritic array structures forming during solidification processes such as casting, welding, or additive manufacturing are generally polycrystalline. Both the array structure within each grain and the larger scale grain structure determine the performance of many structural alloys. How those two structures coevolve during solidification remains poorly understood. By in situ observations of microgravity alloy solidification experiments onboard the International Space Station, we have discovered that individual cells from one grain can unexpectedly invade a nearby grain of different misorientation, either as a solitary cell or as rows of cells. This invasion process causes grains to interpenetrate each other and hence grain boundaries to adopt highly convoluted shapes. Those observations are reproduced by phase-field simulations further demonstrating that invasion occurs for a wide range of misorientations. Those results fundamentally change the traditional conceptualization of grains as distinct regions embedded in three-dimensional space.

3.
Nanoscale ; 14(48): 18175-18183, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36453723

RESUMO

This work presents the synthesis of SiC nanowires floating in a gas stream through the vapour-liquid-solid (VLS) mechanism using an aerosol of catalyst nanoparticles. These conditions lead to ultrafast growth at 8.5 µm s-1 (maximum of 50 µm s-1), which is up to 3 orders of magnitude above conventional substrate-based chemical vapour deposition. The high aspect ratio of the nanowires (up to 2200) favours their entanglement and the formation of freestanding network materials consisting entirely of SiCNWs. The floating catalyst chemical vapour deposition growth process is rationalised through in situ sampling of reaction products and catalyst aerosol from the gas phase, and thermodynamic calculations of the bulk ternary Si-C-Fe phase diagram. The phase diagram suggests a description of the mechanistic path for the selective growth of SiCNWs, consistent with the observation that no other types of nanowires (Si or C) are grown by the catalyst. SiCNW growth occurs at 1130 °C, close to the calculated eutectic. According to the calculated phase diagram, upon addition of Si and C, the Fe-rich liquid segregates a carbon shell, and later enrichment of the liquid in Si leads to the formation of SiC. The exceptionally fast growth rate relative to substrate-based processes is attributed to the increased availability of precursors for incorporation into the catalyst due to the high collision rate inherent to this new synthesis mode.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA