RESUMO
The aim of this study was to assess per- and polyfluoroalkyl substances (PFASs) in the Swedish aquatic environment, identify emission sources, and compare measured concentrations with environmental quality standards (EQS) and (drinking) water guideline values. In total, 493 samples were analyzed in 2015 for 26 PFASs (∑26PFASs) in surface water, groundwater, landfill leachate, sewage treatment plant effluents and reference lakes, focusing on hot spots and drinking water sources. Highest ∑26PFAS concentrations were detected in surface water (13â¯000 ng L-1) and groundwater (6400 ng L-1). The dominating fraction of PFASs in surface water were perfluoroalkyl carboxylates (PFCAs; 64% of ∑26PFASs), with high contributions from C4-C8 PFCAs (94% of ∑PFCAs), indicating high mobility of shorter chain PFCAs. In inland surface water, the annual average (AA)-EQS of the EU Water Framework Directive of 0.65 ng L-1 for ∑PFOS (linear and branched isomers) was exceeded in 46% of the samples. The drinking water guideline value of 90 ng L-1 for ∑11PFASs recommended by the Swedish EPA was exceeded in 3% of the water samples from drinking water sources ( n = 169). The branched isomers had a noticeable fraction in surface- and groundwater for perfluorooctanesulfonamide, perfluorohexanesulfonate, and perfluorooctanesulfonate, highlighting the need to include branched isomers in future guidelines.
Assuntos
Água Potável , Fluorocarbonos , Água Subterrânea , Poluentes Químicos da Água , Ácidos Carboxílicos , Monitoramento Ambiental , SuéciaRESUMO
Tropical estuaries are threatened by rapid urbanization, which leads to the spread of thousands of micropollutants and poses an environmental risk to such sensitive aqueous ecosystems. In the present study, a combination of chemical and bioanalytical water characterization was applied to investigate the impact of Ho Chi Minh megacity (HCMC, 9.2 million inhabitants in 2021) on the Saigon River and its estuary and provide a comprehensive water quality assessment. Water samples were collected along a 140-km stretch integrating the river-estuary continuum from upstream HCMC down to the estuary mouth in the East Sea. Additional water samples were collected at the mouth of the four main canals of the city center. Chemical analysis was performed targeting up to 217 micropollutants (pharmaceuticals, plasticizers, PFASs, flame retardants, hormones, pesticides). Bioanalysis was performed using six in-vitro bioassays for hormone receptor-mediated effects, xenobiotic metabolism pathways and oxidative stress response, respectively, all accompanied by cytotoxicity measurement. A total of 120 micropollutants were detected and displayed high variability along the river continuum with total concentration ranging from 0.25 to 78 µg L-1. Among them, 59 micropollutants were ubiquitous (detection frequency ≥ 80 %). An attenuation was observed in concentration and effect profiles towards the estuary. The urban canals were identified as major sources of micropollutants and bioactivity to the river, and one canal (Ben Nghé) exceeded the effect-based trigger values derived for estrogenicity and xenobiotic metabolism. Iceberg modelling apportioned the contribution of the quantified and the unknown chemicals to the measured effects. Diuron, metolachlor, chlorpyrifos, daidzein, genistein, climbazole, mebendazole and telmisartan were identified as main risk drivers of the oxidative stress response and xenobiotic metabolism pathway activation. Our study reinforced the need for improved wastewater management and deeper evaluations of the occurrence and fate of micropollutants in urbanized tropical estuarine environments.
Assuntos
Poluentes Químicos da Água , Qualidade da Água , Monitoramento Ambiental , Estuários , Ecossistema , Xenobióticos , Rios/química , Bioensaio , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análiseRESUMO
Drinking water quality and treatment efficacy was investigated in seven drinking water treatment plants (DWTPs), using water from the river Göta Älv, which also is a recipient of treated sewage water. A panel of cell-based bioassays was used, including measurements of receptor activity of aryl hydrocarbon (AhR), estrogen (ER), androgen (AR), peroxisome proliferator-activated receptor alpha (PPARα) as well as induction of oxidative stress (Nrf2) and micronuclei formation. Grab water samples were concentrated by solid phase extraction (SPE) and water samples were analyzed at a relative enrichment factor of 50. High activities of AhR, ER and AR antagonism were present in WWTP outlets along the river. Inlet water from the river exhibited AhR and AR antagonistic activities. AhR activity was removed by DWTPs using granulated activated carbon (GAC) and artificial infiltration. AR antagonistic activity was removed by the treatment plants, except the artificial infiltration plant, which actually increased the activity. Furthermore, treated drinking water from the DWTP using artificial infiltration exhibited high Nrf2 activity, which was not found in any of the other water samples. Nrf2 activity was found in water from eight of the 13 abstraction wells, collecting water from the artificial infiltration. No genotoxic activity was detected at non-cytotoxic concentrations. No Nrf2 or AR antagonistic activities were detected in the inlet or outlet water after the DWTP had been replaced by a new plant, using membrane ultrafiltration and GAC. Neither target chemical analysis, nor chemical analysis according to the drinking water regulation, detected any presence of chemicals, which could be responsible of the prominent effects on oxidative stress and AR antagonistic activity in the drinking water samples. Thus, bioanalysis is a useful tool for detection of unknown hazards in drinking water and for assessment of drinking water treatments.
Assuntos
Água Potável , Poluentes Químicos da Água , Purificação da Água , Bioensaio , Água Potável/análise , Estresse Oxidativo , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Qualidade da ÁguaRESUMO
There is growing worry that drinking water can be affected by contaminants of emerging concern (CECs), potentially threatening human health. In this study, a wide range of CECs (n = 177), including pharmaceuticals, pesticides, perfluoroalkyl substances (PFASs) and other compounds, were analysed in raw water and in drinking water collected from drinking water treatment plants (DWTPs) in Europe and Asia (n = 13). The impact of human activities was reflected in large numbers of compounds detected (n = 115) and high variation in concentrations in the raw water (range 15-7995 ng L-1 for ∑177CECs). The variation was less pronounced in drinking water, with total concentration ranging from 35 to 919 ng L-1. Treatment efficiency was on average 65 ± 28%, with wide variation between different DWTPs. The DWTP with the highest ∑CEC concentrations in raw water had the most efficient treatment procedure (average treatment efficiency 89%), whereas the DWTP with the lowest ∑177CEC concentration in the raw water had the lowest average treatment efficiency (2.3%). Suspect screening was performed for 500 compounds ranked high as chemicals of concern for drinking water, using a prioritisation tool (SusTool). Overall, 208 features of interest were discovered and three were confirmed with reference standards. There was co-variation between removal efficiency in DWTPs for the target compounds and the suspected features detected using suspect screening, implying that removal of known contaminants can be used to predict overall removal of potential CECs for drinking water production. Our results can be of high value for DWTPs around the globe in their planning for future treatment strategies to meet the increasing concern about human exposure to unknown CECs present in their drinking water.
Assuntos
Água Potável , Poluentes Químicos da Água , Purificação da Água , Ásia , Água Potável/análise , Monitoramento Ambiental , Europa (Continente) , Humanos , Poluentes Químicos da Água/análiseRESUMO
Precision, reproducibility and lower limit of quantitation (LLOQ) are important characteristics of a quantitative method. We have investigated these properties for Ximelagatran (Xi), which has a high tendency to form doubly charged ions in electrospray ionization (ESI), by studying the percentage of doubly charged species formed when varying the formic acid (FA) concentration, analyte concentration, amount of organic modifier and flow rate. It was found that the percentage of [Xi + 2H](2+) can be controlled to be more than 90% or less than 10% by varying the amount of FA present, and that the change between these values is dramatic. Furthermore, the percentage of [Xi + 2H](2+) formed decreases with increased analyte concentration and increased flow rate. No apparent relationship with the amount of organic modifier was found. The results have the implication that, by carefully controlling the selected parameters, the LLOQ, precision and reproducibility can be improved. We have compared the fragmentation of the singly and doubly charged species and concluded that the [Xi + 2H](2+) ion is more inclined to undergo fragmentation than [Xi + H](+). As a consequence, unusual instrumental settings had to be used for the experiments. The fragmentation patterns are to a great extent similar, but the doubly charged species is more inclined to generate low-mass product ions.
RESUMO
Syringe filters are used to separate solids from liquids prior to analysis of poly- and perfluoroalkyl substances (PFASs). This is a critical step in sample preparation, as losses of PFASs to the filter material can be significant and lead to underestimation. This study evaluated losses of 21 PFASs in three different matrices (methanol, MilliQ water, and water containing 10â¯mgâ¯L-1 dissolved organic carbon (DOC)) to six different types of syringe filter (0.45 and 0.22⯵m). Regarding sample matrix, the lowest average ∑21PFAS losses were observed in methanol (13%), followed by DOC water (19%) and MilliQ water (26%). Regarding syringe filter material, the lowest average losses of ∑21PFAS in DOC water and MilliQ water were observed for a recycled cellulose filter (average losses 16% and 21%, respectively), while a polypropylene filter had the lowest ∑21PFAS losses in methanol (9%). A smaller polyethersulfone (PES) filter (0.22⯵m, 17â¯mm Ø) showed significantly (pâ¯<â¯0.05) lower ∑21PFAS losses in DOC water (on average 7.3%) than a larger PES filter (0.45⯵m, 37â¯mm Ø) (23%). In DOC water, losses to the filter increased by 3.8%, 5.1%, and 8.4% per CF2-moiety for C3-C11 perfluoroalkyl carboxylates (PFCAs), perfluoroalkyl sulfonates (PFSAs), and fluorotelomer sulfonic acids (FTSAs), respectively. Comparing different functional groups of PFASs, losses increased as follows: PFCAsâ¯<â¯PFSAsâ¯<â¯FTSAsâ¯<â¯perfluorooctanesulfonamides (FOSAs). Thus, care is needed when including filtration in PFAS analysis, since losses can be significant (up to 100%) depending on the type of syringe filter, target PFAS, and matrix.
Assuntos
Filtração , Fluorocarbonos/análise , Seringas , Carbono/análise , Compostos Orgânicos/análise , Análise de Componente Principal , Água/análiseRESUMO
A wide range of organic micropollutants (nâ¯=â¯163) representing several compound categories (pharmaceuticals, pesticides, per- and polyfluorinated alkyl substances, flame retardants, phthalates, food additives, drugs and benzos) were analysed in water samples from the Göta Älv river (Sweden's second largest source water). The sampling also included raw water and finished drinking water from seven drinking water treatment plants and in addition a more detailed sampling at one of the treatment plants after six granulated active carbon filters of varying operational ages. In total, 27 organic micropollutants were detected, with individual concentrations ranging from subâ¯ngâ¯L-1 levels to 54â¯ngâ¯L-1. The impact of human activities along the flow path was reflected by increased concentrations downstream the river, with total concentrations ranging from 65â¯ngâ¯L-1 at the start of the river to 120â¯ngâ¯L-1 at the last sampling point. The removal efficiency was significantly (pâ¯=â¯0.014; one-sided t-test) higher in treatment plants that employed granulated active carbon filters (nâ¯=â¯4; average 60%) or artificial infiltration (nâ¯=â¯1; 65%) compared with those that used a more conventional treatment strategy (nâ¯=â¯2; 38%). The removal was also strongly affected by the operational age of the carbon filters. A filter with an operational age of 12â¯months with recent addition of ~10% new material showed an average removal efficiency of 92%, while a 25-month old filter had an average of 76%, and an even lower 34% was observed for a 71-month old filter. The breakthrough in the carbon filters occurred in the order of dissolved organic carbon, per- and polyfluorinated alkyl substances and then other organic micropollutants. The addition of fresh granulated active carbon seemed to improve the removal of hydrophobic organic compounds, particularly dissolved organic carbon and per- and polyfluorinated alkyl substances.
Assuntos
Purificação da Água , Carbono , Água Potável , Suécia , Poluentes Químicos da ÁguaRESUMO
A multi-residue screening method for simultaneous measurement of a wide range of micropollutants in drinking water (DW) resources was developed. The method was applied in a field study in central Sweden on water from source to tap, including samples of surface water (upstream and downstream of a wastewater treatment plant, WWTP), intake water before and after a DW treatment plant (DWTP, pilot and full-scale), treated DW leaving the plant and tap water at end users. Low detection limits (low ngâ¯L-1 levels) were achieved by using large sample volumes (5 L) combined with ultra performance liquid chromatography high resolution mass spectrometry (UPLC-HRMS). In total, 134 different micropollutants were analyzed, including pesticides, pharmaceuticals and personal care products (PPCPs), drug-related compounds, food additives, and perfluoroalkyl substances (PFASs). Of these 134 micropollutants, 41 were detected in at least one sample, with individual concentrations ranging from sub ngâ¯L-1 levels to ~80â¯ngâ¯L-1. Two solid phase extraction (SPE) cartridges (Oasis HLB and Bond-Elut ENV) were shown to be complementary in the field study, with three compounds detected exclusively using HLB. The total concentration in treated drinking water (56-57â¯ngâ¯L-1) was at a similar level as upstream from the WWTP (79-90â¯ngâ¯L-1). The composition of micropollutants changed along the water path, to a higher fraction of food additives and PFASs. Median treatment efficiency in the full-scale DWTP was close to 0%, but with high variability for individual compounds. In contrast, median treatment efficiency in the pilot-scale DWTP was ~90% when using nanofiltration followed by a freshly installed granulated active carbon (GAC) filter.
Assuntos
Água Potável/química , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Limite de Detecção , Praguicidas , Extração em Fase Sólida , Suécia , Espectrometria de Massas em Tandem , Purificação da ÁguaRESUMO
In surface waters within agricultural catchments, periphyton - i.e., biofilms containing algae, heterotrophs, and associated detritus - is subjected to multiple stressors including herbicides. Although herbicide effects on periphyton are frequently studied, the focus has been on photosynthesis-inhibiting herbicides while other modes of toxic action have received little attention. Against this background, a 21-days-lasting bioassay was conducted, during which mature periphytic communities were exposed to the carotenoid-biosynthesis-inhibiting herbicide diflufenican for 12 days (up to 10 µg/L; n = 4), followed by a 9-days-lasting recovery phase in herbicide-free medium. Variables related to periphytic functioning (photosynthetic efficiency and non-photochemical quenching) and structure (pigment concentrations, biomass, and algal community structure) were quantified every third day during both experimental phases. Exposure to ≥ 0.2 µg diflufenican/L resulted in 20-25% and 25-30% lowered carotenoid and chlorophyll a concentrations, respectively, likely explained by a reduced algal biovolume as well as diflufenican's mode of toxic action and thus a shift towards a higher heterotrophy of the communities. Despite these adverse effects on the photosynthetic apparatus, the photosynthetic efficiency increased by up to â¼15% under diflufenican exposure judged on higher chlorophyll fluorescence. This may be explained by an up to â¼60% reduced non-photochemical quenching as well as binding of diflufenican to the pigment-protein membrane complex of the photosystem II, two processes causing higher chlorophyll fluorescence. Additionally, phototrophs may have actively increased energy assimilation to cope with higher energy demands under chemical stress. Although periphyton showed some recovery potential following the exposure phase, observed as increasing chlorophyll a concentrations and non-photochemical quenching, periphyton may not be able to quickly recover from stress given the persistent increase in the photosynthetic efficiency. While the processes underlying the observed effects yet remain speculative, the results suggest a shift towards a higher degree of heterotrophy in periphytic communities ultimately increasing the importance of heterotrophic ecosystem functions at impacted sites over the long term.
Assuntos
Clorofila/metabolismo , Herbicidas/toxicidade , Luz , Perifíton/fisiologia , Perifíton/efeitos da radiação , Biomassa , Carotenoides/metabolismo , Clorofila A , Ecossistema , Fluorescência , Niacinamida/análogos & derivados , Niacinamida/toxicidade , Fotossíntese/efeitos dos fármacos , Complexo de Proteína do Fotossistema II/metabolismo , Poluentes Químicos da Água/toxicidadeRESUMO
The presence of chemical pollutants in sources of drinking water is a key environmental problem threatening public health. Efficient removal of pollutants in drinking water treatment plants (DWTPs) is needed as well as methods for assessment of the total impact of all present chemicals on water quality. In the present study we have analyzed the bioactivity of water samples from source to tap, including effects of various water treatments in a DWTP, using a battery of cell-based bioassays, covering health-relevant endpoints. Reporter gene assays were used to analyze receptor activity of the aryl hydrocarbon receptor (AhR), estrogen receptor (ER), androgen receptor (AR), peroxisome proliferator-activated receptor alpha (PPARα) and induction of oxidative stress by the nuclear factor erythroid 2-related factor 2 (Nrf2). DNA damage was determined by Comet assay. Grab water samples were concentrated by HLB or ENV solid phase extraction and the water samples assayed at a relative enrichment factor of 50. The enrichment procedure did not induce any bioactivity. No bioactivity was detected in Milli-Q water or drinking water control samples. Induction of AhR, ER and Nrf2 activities was revealed in source to tap water samples. No cytotoxicity, PPARα or AR antagonist activity, or DNA damage were observed in any of the water samples. A low AR agonist activity was detected in a few samples of surface water, but not in the samples from the DWTP. The treatment steps at the DWTP, coagulation, granulated activated carbon filtration, UV disinfection and NH2Cl dosing had little or no effect on the AhR, Nrf2 and ER bioactivity. However, nanofiltration and passage through the distribution network drastically decreased AhR activity, while the effect on Nrf2 activity was more modest and no apparent effect was observed on ER activity. The present results suggest that bioassays are useful tools for evaluation of the efficiency of different treatment steps in DWTPs in reducing toxic activities. Bioassays of AhR and Nrf2 are useful for screening of effects of a broad range of chemicals in drinking water and ER activity can be monitored with a high sensitivity.
Assuntos
Água Potável/efeitos adversos , Poluentes Químicos da Água/efeitos adversos , Purificação da Água , Animais , Células CHO , Linhagem Celular Tumoral , Ensaio Cometa , Cricetulus , Desinfecção , Água Potável/análise , Filtração , Humanos , Fator 2 Relacionado a NF-E2/genética , PPAR alfa/genética , Receptores Androgênicos/genética , Receptores de Hidrocarboneto Arílico/genética , Receptores de Estrogênio/genética , Poluentes Químicos da Água/análiseRESUMO
A single laboratory validation study of a rapid and sensitive quantitative method for the analysis of cereulide toxin produced by Bacillus cereus using ultra high performance liquid chromatography-electrospray-tandem mass spectrometry is presented. The analysis of this cyclic peptide toxin was validated for pasta and rice samples using a newly presented synthetic cereulide peptide standard, together with 13C6-cereulide that previously have not been commercially available. The use of cereulide standard was also compared to the most frequently used surrogate standard, the antibiotic valinomycin. The performance of the method was evaluated by analyzing spiked sample pools from different types of rice and pasta, as well as 21 individual rice and pasta samples from differently prepared meals. Inoculation of samples with three cereulide toxin-producing strains of Bacillus cereus was finally used to mimic naturally contaminated foods. The quantification range of the method was 1-500 ng/g (R2 = 0.999) and the limits of detection and quantification were 0.1 and 1 ng/g, respectively. The precision varied from 3% to 7% relative standard deviation and the trueness from -2% to +6% relative bias at different concentration levels in cooked rice and pasta.
Assuntos
Bacillus cereus/química , Depsipeptídeos/análise , Contaminação de Alimentos/análise , Oryza/microbiologia , Calibragem , Cromatografia Líquida de Alta Pressão , Depsipeptídeos/toxicidade , Microbiologia de Alimentos , Limite de Detecção , Peptídeos Cíclicos/análise , Peptídeos Cíclicos/toxicidade , Sensibilidade e Especificidade , Espectrometria de Massas em TandemRESUMO
In this study serum levels of bisphenol A (BPA) were investigated in primiparous women from Uppsala County, Sweden, sampled 3weeks after delivery 1996-2011, in both yearly pools of serum (n=39, temporal trend study) and in 208 individual samples also present in the pools. Possible contamination risks of BPA from blood sampling equipment and sample tubes, as well as from handling of the samples were evaluated. The unconjugated form of BPA was analyzed using a UPLC-MS/MS method with a limit of quantification (LOQ) of 0.2ng/ml. The results show that the levels of unconjugated BPA generally were <0.2ng/ml. The sampling equipment used when taking blood samples from the women and the tubes used for storage and processing of samples did not show any detectable BPA leakage. In the first analysis of the serum samples, unconjugated BPA levels ≥0.2ng/ml were found in 12% of the individual samples and in 21% of the trend samples. However, in reanalyses of individual serum samples from the same aliquot or from new aliquots, samples with BPA levels ≥0.2ng/ml in the first analysis did not have quantifiable BPA levels. Moreover, 11% of BPA spiked calibration samples (over 200) had higher levels than could be explained by the random error of the method. Thus BPA contamination of the biobanked samples probably occurred randomly during sample handling, pooling and processing. Equipment used for sampling of children and repeated blood sampling were leaking BPA. The results show the difficulties in analyzing compounds where samples are easily contaminated from exogenous sources. It also points out that it is questionable to use biobanked samples unless absence of BPA contamination from the sampling and storage materials, and during handling of the samples, can be proven.
Assuntos
Compostos Benzidrílicos/sangue , Aleitamento Materno , Fenóis/sangue , Adulto , Criança , Feminino , Humanos , Viés de Seleção , Suécia , Espectrometria de Massas em TandemRESUMO
Steroidal glycoalkaloids (SGA) are toxic secondary metabolites naturally occurring in the potato, as well as in certain other Solanaceous plant species, such as tomato, eggplant and pepper. To investigate the steroidal origin of SGA biosynthesis, cut potato shoots were fed cholesterol labelled with deuterium (D) in the sterol ring structure (D5- or D6-labelled), or side chain (D7-labelled), and analysed after three or five weeks. The labelled cholesterol and presence of D-labelled SGA were analysed by GC-MS and LC-MS/MS, respectively. When feeding D-labelled cholesterol solubilised in Tween-80, labelled cholesterol in free form became present in both leaves and stems, although the major part was recovered as steryl esters. Minor amounts of D-labelled SGA (α-solanine and α-chaconine) were identified in cholesterol-treated shoots, but not in blank controls, or in shoots fed D6-27-hydroxycholesterol. Solubilising the labelled cholesterol in methyl-ß-cyclodextrin instead of Tween-80 increased the levels of labelled SGA up to 100-fold, and about 1 mole% of the labelled cholesterol was recovered as labelled SGA in potato leaves. Both side chain and ring structure D labels were retained in SGA, showing that the entire cholesterol molecule is converted to SGA. However, feeding side chain D7-labelled cholesterol resulted in D5-labelled SGA, indicating that two hydrogen atoms were released during formation of the SGA nitrogen-containing ring system. Feeding with D7-sitosterol did not produce any labelled SGA, indicating that cholesterol is a specific SGA precursor. In conclusion, we have demonstrated a superior performance of methyl-ß-cyclodextrin for delivery of cholesterol in plant tissue feeding experiments, and given firm evidence for cholesterol as a specific sterol precursor of SGA in potato.