Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Blood ; 143(25): 2666-2670, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38635757

RESUMO

ABSTRACT: Lysyl oxidase (LOX) is a facilitator of extracellular matrix cross-linking. Using newly developed megakaryocyte-specific LOX knockout mice, we show that LOX expressed in these scarce bone marrow cells affects bone volume and collagen architecture in a sex-dependent manner.


Assuntos
Megacariócitos , Camundongos Knockout , Proteína-Lisina 6-Oxidase , Animais , Proteína-Lisina 6-Oxidase/metabolismo , Proteína-Lisina 6-Oxidase/genética , Megacariócitos/metabolismo , Megacariócitos/citologia , Camundongos , Masculino , Feminino , Osso e Ossos/metabolismo , Caracteres Sexuais , Colágeno/metabolismo , Deleção de Genes , Fatores Sexuais , Proteínas da Matriz Extracelular
2.
Int J Mol Sci ; 24(7)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37047014

RESUMO

This Special Issue on lysyl oxidases, which are proteins derived from five related genes known as Lox, and Loxl1-Loxl4, brings together articles that reflect some of the diverse approaches and perspectives needed to better understand the biology of these multifunctional proteins [...].


Assuntos
Aminoácido Oxirredutases , Proteína-Lisina 6-Oxidase , Proteína-Lisina 6-Oxidase/genética , Proteína-Lisina 6-Oxidase/metabolismo , Aminoácido Oxirredutases/genética , Aminoácido Oxirredutases/metabolismo
3.
Int J Mol Sci ; 24(11)2023 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-37298359

RESUMO

Oral cancer is primarily squamous-cell carcinoma with a 5-year survival rate of approximately 50%. Lysyl oxidase (LOX) participates in collagen and elastin maturation. The propeptide of LOX is released as an 18 kDa protein (LOX-PP) in the extracellular environment by procollagen C-proteinases and has tumor-inhibitory properties. A polymorphism in the propeptide region of LOX (rs1800449, G473A) results in a single amino acid substitution of Gln for Arg. Here we investigated the frequency of rs1800449 in OSCC employing TCGA database resources and determined the kinetics and severity of precancerous oral lesion development in wildtype and corresponding knockin mice after exposure to 4-nitroquinoline oxide (4 NQO) in drinking water. Data show that the OSCC is more common in humans carrying the variant compared to the wildtype. Knockin mice are more susceptible to lesion development. The immunohistochemistry of LOX in mouse tissues and in vitro studies point to a negative feedback pathway of wildtype LOX-PP on LOX expression that is deficient in knockin mice. Data further demonstrate modulations of T cell phenotype in knockin mice toward a more tumor-permissive condition. Data provide initial evidence for rs1800449 as an oral cancer susceptibility biomarker and point to opportunities to better understand the functional mechanism of LOX-PP cancer inhibitory activity.


Assuntos
Neoplasias Bucais , Proteína-Lisina 6-Oxidase , Animais , Humanos , Camundongos , Carcinógenos , Colágeno/genética , Neoplasias Bucais/genética , Polimorfismo Genético , Proteína-Lisina 6-Oxidase/metabolismo
4.
Int J Mol Sci ; 23(9)2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35563478

RESUMO

Lysyl oxidases are multifunctional proteins derived from five lysyl oxidase paralogues (LOX) and lysyl oxidase-like 1 through lysyl oxidase-like 4 (LOXL1-LOXL4). All participate in the biosynthesis of and maturation of connective tissues by catalyzing the oxidative deamination of lysine residues in collagens and elastin, which ultimately results in the development of cross-links required to function. In addition, the five LOX genes have been linked to fibrosis and cancer when overexpressed, while tumor suppression by the propeptide derived from pro-LOX has been documented. Similarly, in diabetic retinopathy, LOX overexpression, activity, and elevated LOX propeptide have been documented. The proteolytic processing of pro-forms of the respective proteins is beginning to draw attention as the resultant peptides appear to exhibit their own biological activities. In this review we focus on the LOX paralogue, and what is known regarding its extracellular biosynthetic processing and the still incomplete knowledge regarding the activities and mechanisms of the released lysyl oxidase propeptide (LOX-PP). In addition, a summary of the roles of both LOX and LOX-PP in diabetic retinopathy, and brief mentions of the roles for LOX and closely related LOXL1 in glaucoma, and keratoconus, respectively, are included.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Neoplasias , Proteína-Lisina 6-Oxidase , Colágeno/metabolismo , Diabetes Mellitus/enzimologia , Diabetes Mellitus/metabolismo , Retinopatia Diabética/enzimologia , Retinopatia Diabética/metabolismo , Humanos , Neoplasias/enzimologia , Neoplasias/metabolismo , Peptídeos , Proteína-Lisina 6-Oxidase/metabolismo
5.
Am J Pathol ; 189(10): 1945-1952, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31537300

RESUMO

Diabetic retinopathy (DR) is characterized by apoptotic cell loss in the retinal vasculature. Lysyl oxidase propeptide (LOX-PP), released during LOX processing, has been implicated in promoting apoptosis in various diseased tissues. However, its role in the development and progression of DR is unknown. We investigated whether high glucose (HG) or diabetes alters LOX-PP expression and thereby influences AKT pathway and affects retinal endothelial cell survival. Rat retinal endothelial cells were grown in normal medium, normal medium and exposed to recombinant LOX-PP (rLOX-PP) or HG medium and examined for LOX-PP expression, AKT and caspase-3 activation. Similarly, rats intravitreally injected with rLOX-PP were examined for changes in retinal LOX-PP levels, AKT phosphorylation, and the number of acellular capillaries and pericyte loss compared with those of control diabetic and nondiabetic rats. Results indicate that HG up-regulates LOX-PP expression and reduces AKT activation. In addition, cells exposed to rLOX-PP alone exhibited increased apoptosis concomitant with decreased AKT phosphorylation. In retinas of diabetic rats, increased LOX-PP level, decreased AKT phosphorylation, and increased number of acellular capillaries and pericyte loss compared with those of nondiabetic rats were observed. Of interest, similar changes were noted in the retinas of rats injected with rLOX-PP. Findings from this study suggest that hyperglycemia-induced LOX-PP overexpression may contribute to retinal vascular cell loss associated with DR.


Assuntos
Diabetes Mellitus Experimental/complicações , Retinopatia Diabética/patologia , Células Endoteliais/patologia , Glucose/farmacologia , Fragmentos de Peptídeos/metabolismo , Proteína-Lisina 6-Oxidase/metabolismo , Retina/patologia , Animais , Sobrevivência Celular , Retinopatia Diabética/etiologia , Retinopatia Diabética/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Masculino , Proteína-Lisina 6-Oxidase/genética , Ratos , Ratos Sprague-Dawley , Retina/efeitos dos fármacos , Retina/metabolismo , Edulcorantes/farmacologia
6.
Carcinogenesis ; 39(7): 921-930, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29579155

RESUMO

The propeptide (LOX-PP) domain of the lysyl oxidase proenzyme was shown to inhibit the transformed phenotype of breast, lung and pancreatic cells in culture and the formation of Her2/neu-driven breast cancer in a xenograft model. A single nucleotide polymorphism (SNP, rs1800449) positioned in a highly conserved region of LOX-PP results in an Arg158Gln substitution (humans). This arginine (Arg)→glutamine (Gln) substitution profoundly impaired the ability of LOX-PP to inhibit the invasive phenotype and xenograft tumor formation. To study the effect of the SNP in vivo, here we established a knock in (KI) mouse line (LOX-PPGln mice) expressing an Arg152Gln substitution corresponding to the human Arg158Gln polymorphism. Breast cancer was induced in wild-type (WT) and LOX-PPGln female mice beginning at 6 weeks of age by treatment with 7,12-dimethylbenz(a)anthracene (DMBA) in combination with progesterone. Time course analysis of tumor development demonstrated earlier tumor onset and shorter overall survival in LOX-PPGln versus WT mice. To further compare the tumor burden in WT and LOX-PPGln mice, inguinal mammary glands from both groups of mice were examined for microscopic lesion formation. LOX-PPGln glands contained more lesions (9.6 versus 6.9 lesions/#4 bilateral). In addition, more DMBA-treated LOX-PPGln mice had increased leukocyte infiltrations in their livers and were moribund compared with DMBA-treated WT mice. Thus, these data indicate that the Arg→Gln substitution in LOX-PP could be an important marker associated with a more aggressive cancer phenotype and that this KI model is ideal for further mechanistic studies regarding the tumor suppressor function of LOX-PP.


Assuntos
Neoplasias da Mama/induzido quimicamente , Neoplasias da Mama/genética , Carcinógenos/toxicidade , Proteínas da Matriz Extracelular/genética , Polimorfismo de Nucleotídeo Único/genética , Proteína-Lisina 6-Oxidase/genética , Animais , Biomarcadores Tumorais/genética , Carcinogênese/induzido quimicamente , Carcinogênese/genética , Linhagem Celular Tumoral , Genes Supressores de Tumor/efeitos dos fármacos , Xenoenxertos , Camundongos , Camundongos Endogâmicos C57BL
7.
Blood ; 127(11): 1493-501, 2016 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-26755713

RESUMO

Lysyl oxidase (LOX) is overexpressed in various pathologies associated with thrombosis, such as arterial stenosis and myeloproliferative neoplasms (MPNs). LOX is elevated in the megakaryocytic lineage of mouse models of MPNs and in patients with MPNs. To gain insight into the role of LOX in thrombosis and platelet function without compounding the influences of other pathologies, transgenic mice expressing LOX in wild-type megakaryocytes and platelets (Pf4-Lox(tg/tg)) were generated. Pf4-Lox(tg/tg) mice had a normal number of platelets; however, time to vessel occlusion after endothelial injury was significantly shorter in Pf4-Lox(tg/tg) mice, indicating a higher propensity for thrombus formation in vivo. Exploring underlying mechanisms, we found that Pf4-Lox(tg/tg) platelets adhere better to collagen and have greater aggregation response to lower doses of collagen compared with controls. Platelet activation in response to the ligand for collagen receptor glycoprotein VI (cross-linked collagen-related peptide) was unaffected. However, the higher affinity of Pf4-Lox(tg/tg) platelets to the collagen sequence GFOGER implies that the collagen receptor integrin α2ß1 is affected by LOX. Taken together, our findings demonstrate that LOX enhances platelet activation and thrombosis.


Assuntos
Plaquetas/efeitos dos fármacos , Colágeno/farmacologia , Ativação Plaquetária/fisiologia , Proteína-Lisina 6-Oxidase/fisiologia , Trombofilia/enzimologia , Animais , Plaquetas/citologia , Lesões das Artérias Carótidas/complicações , Trombose das Artérias Carótidas/etiologia , Integrina alfa2beta1/fisiologia , Megacariócitos/enzimologia , Camundongos , Camundongos Transgênicos , Fragmentos de Peptídeos/farmacologia , Adesividade Plaquetária/genética , Adesividade Plaquetária/fisiologia , Agregação Plaquetária/efeitos dos fármacos , Agregação Plaquetária/genética , Fator Plaquetário 4/genética , Regiões Promotoras Genéticas , Proteína-Lisina 6-Oxidase/genética , Ratos , Trombofilia/genética
8.
J Cell Biochem ; 118(8): 2347-2356, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28106301

RESUMO

The lysyl oxidase proenzyme propeptide region (LOX-PP) is a tumor suppressor protein whose mechanism of action is not completely understood. Here, the Ubiquitously expressed Transcript (UXT) was identified in a yeast two-hybrid assay with LOX-PP as bait and confirmed as a novel LOX-PP associating protein. UXT, a prefoldin-like protein, is ubiquitous in human and mouse. Since UXT modulates androgen receptor transcriptional activity in prostate cancer, we studied its role in breast cancer. Breast tumors and derived cell lines overexpressed UXT. UXT was able to associate with the estrogen receptor alpha (ER) and decrease its transcriptional activity and target gene expression. Conversely, UXT knockdown increased ER element-dependent transcriptional activity. Ectopic LOX-PP relocalized UXT to the cytoplasm and decreased its stability. UXT ubiquitination and depletion in the presence of LOX-PP was rescued by a proteasomal inhibitor. In summary, proteasome-mediated turnover of UXT upon interaction with LOX-PP releases repression of ER transcriptional activity. J. Cell. Biochem. 118: 2347-2356, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Neoplasias da Mama/metabolismo , Receptor alfa de Estrogênio/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Neoplasias/metabolismo , Proteína-Lisina 6-Oxidase/metabolismo , Transdução de Sinais/fisiologia , Animais , Western Blotting , Neoplasias da Mama/genética , Proteínas de Ciclo Celular , Linhagem Celular , Linhagem Celular Tumoral , Receptor alfa de Estrogênio/genética , Feminino , Imunofluorescência , Humanos , Imunoprecipitação , Células MCF-7 , Camundongos , Chaperonas Moleculares/genética , Proteínas de Neoplasias/genética , Ligação Proteica , Proteína-Lisina 6-Oxidase/genética , Transdução de Sinais/genética , Técnicas do Sistema de Duplo-Híbrido
9.
Am J Pathol ; 185(6): 1588-99, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25843680

RESUMO

Drug-induced gingival overgrowth is caused by the antiseizure medication phenytoin, calcium channel blockers, and ciclosporin. Characteristics of these drug-induced gingival overgrowth lesions differ. We evaluate the ability of a mouse model to mimic human phenytoin-induced gingival overgrowth and assess the ability of a drug to prevent its development. Lovastatin was chosen based on previous analyses of tissue-specific regulation of CCN2 production in human gingival fibroblasts and the known roles of CCN2 in promoting fibrosis and epithelial to mesenchymal transition. Data indicate that anterior gingival tissue overgrowth occurred in phenytoin-treated mice based on gross tissue observations and histomorphometry of tissue sections. Molecular markers of epithelial plasticity and fibrosis were regulated by phenytoin in gingival epithelial tissues and in connective tissues similar to that seen in humans. Lovastatin attenuated epithelial gingival tissue growth in phenytoin-treated mice and altered the expressions of markers for epithelial to mesenchymal transition. Data indicate that phenytoin-induced gingival overgrowth in mice mimics molecular aspects of human gingival overgrowth and that lovastatin normalizes the tissue morphology and the expression of the molecular markers studied. Data are consistent with characterization of phenytoin-induced human gingival overgrowth in vivo and in vitro characteristics of cultured human gingival epithelial and connective tissue cells. Findings suggest that statins may serve to prevent or attenuate phenytoin-induced human gingival overgrowth, although specific human studies are required.


Assuntos
Gengiva/efeitos dos fármacos , Crescimento Excessivo da Gengiva/induzido quimicamente , Crescimento Excessivo da Gengiva/prevenção & controle , Lovastatina/uso terapêutico , Aminoácido Oxirredutases/metabolismo , Animais , Caderinas/metabolismo , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Gengiva/metabolismo , Gengiva/patologia , Crescimento Excessivo da Gengiva/metabolismo , Crescimento Excessivo da Gengiva/patologia , Humanos , Lovastatina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Fenitoína , Fator de Crescimento Transformador beta/metabolismo
10.
Calcif Tissue Int ; 98(2): 172-85, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26538021

RESUMO

Lysyl oxidases are required for collagen and elastin cross-linking and extracellular matrix maturation including in bone. The lysyl oxidase family consists of lysyl oxidase (LOX) and 4 isoforms (LOXL1-4). Here we investigate whether deletion of LOXL1, which has been linked primarily to elastin maturation, leads to skeletal abnormalities. Left femurs (n = 8), L5 vertebrae (n = 8), and tibiae (n = 8) were analyzed by micro-computed tomography in 13-week-old wild-type (WT) and LOXL1-/- male and female mice. Right femurs (n = 8) were subjected to immunohistochemistry for LOXL1, and histochemical/histology analyses of osteoclasts and growth plates. Sera from all mice were analyzed for bone turnover markers. Results indicate strong expression of LOXL1 in wild-type growth plates in femurs. Significant deterioration of trabecular bone structure in long bones and vertebrae from female was observed but not from male, mutant mice compared with WT. Decreases in BV/TV, Conn.D, trabecular thickness, and number in the femoral distal metaphysis were observed in female, but not in male, mutant mice. Trabecular spacing was increased significantly in femurs of female mutant mice. Findings were similar in trabeculae of L5 vertebrae from female mutant mice. The number of TRAP positive osteoclasts at the trabecular bone surface was increased in female mutant mice compared with WT females, consistent with increased serum RANKL and decreased OPG levels. Analysis of bone turnover markers confirmed increased bone resorption as indicated by significantly elevated CTX-1 in the serum of female LOXL1-/- mice compared to their wild-type counterparts, as well as decreased bone formation as measured by decreased serum levels of PINP. Picrosirius red staining revealed a loss of heterogeneity in collagen organization in female LOXL1-/- mice only, with little to no yellow and orange birefringence. Organization was also impaired in chondrocyte columns in both female and male LOXL1-/- mice, but to a greater extent in females. Data indicate that LOXL1-/- mutant mice develop appendicular and axial skeletal phenotypes characterized by decreased bone volume fraction and compromised trabecular microstructure, predominantly in females.


Assuntos
Aminoácido Oxirredutases/metabolismo , Osso e Ossos/diagnóstico por imagem , Caracteres Sexuais , Aminoácido Oxirredutases/deficiência , Animais , Densidade Óssea/fisiologia , Osso e Ossos/metabolismo , Feminino , Imunoensaio , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutagênese Sítio-Dirigida , Fenótipo , Interpretação de Imagem Radiográfica Assistida por Computador , Microtomografia por Raio-X
11.
Am J Physiol Cell Physiol ; 305(6): C581-90, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23824844

RESUMO

Connective tissue growth factor (CCN2/CTGF) mediates transforming growth factor-ß (TGF-ß)-induced fibrosis. Drug-induced gingival overgrowth is tissue specific. Here the role of the phosphoinositol 3-kinase (PI3K) pathway in mediating TGF-ß1-stimulated CCN2/CTGF expression in primary human adult gingival fibroblasts and human adult lung fibroblasts was compared. Data indicate that PI3K inhibitors attenuate upregulation of TGF-ß1-induced CCN2/CTGF expression in human gingival fibroblasts independent of reducing JNK MAP kinase activation. Pharmacologic inhibitors and small interfering (si)RNA-mediated knockdown studies indicate that calcium-dependent isoforms and an atypical isoform of protein kinase C (PKC-δ) do not mediate TGF-ß1-stimulated CCN2/CTGF expression in gingival fibroblasts. As glycogen synthase kinase-3ß (GSK-3ß) can undergo phosphorylation by the PI3K/pathway, the effects of GSK-3ß inhibitor kenpaullone and siRNA knockdown were investigated. Data in gingival fibroblasts indicate that kenpaullone attenuates TGF-ß1-mediated CCN2/CTGF expression. Activation of the Wnt canonical pathways with Wnt3a, which inhibits GSK-3ß, similarly inhibits TGF-ß1-stimulated CCN2/CTGF expression. In contrast, inhibition of GSK-3ß by Wnt3a does not inhibit, but modestly stimulates, CCN2/CTGF levels in primary human adult lung fibroblasts and is ß-catenin dependent, consistent with previous studies performed in other cell models. These data identify a novel pathway in gingival fibroblasts in which inhibition of GSK-3ß attenuates CCN2/CTGF expression. In adult lung fibroblasts inhibition of GSK-3ß modestly stimulates TGF-ß1-regulated CCN2/CTGF expression. These studies have potential clinical relevance to the tissue specificity of drug-induced gingival overgrowth.


Assuntos
Fator de Crescimento do Tecido Conjuntivo/metabolismo , Fibroblastos/metabolismo , Gengiva/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Células Cultivadas , Fator de Crescimento do Tecido Conjuntivo/genética , Fibroblastos/enzimologia , Gengiva/enzimologia , Quinase 3 da Glicogênio Sintase/genética , Glicogênio Sintase Quinase 3 beta , Humanos , Sistema de Sinalização das MAP Quinases , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Fator de Crescimento Transformador beta1/genética , Regulação para Cima , Proteína Wnt3A/genética , Proteína Wnt3A/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
12.
Infect Immun ; 81(7): 2562-73, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23649089

RESUMO

Hypoxia-inducible factor 1 (HIF-1) is the key transcription factor involved in the adaptation of mammals to hypoxia and plays a crucial role in cancer angiogenesis. Recent evidence suggests a leading role for HIF-1 in various inflammatory and infectious diseases. Here we describe the role of HIF-1 in Staphylococcus aureus infections by investigating the HIF-1-dependent host cell response. For this purpose, transcriptional profiling of HIF-1α-deficient HepG2 and control cells, both infected with Staphylococcus aureus, was performed. Four hours after infection, the expression of 190 genes, 24 of which were regulated via HIF-1, was influenced. LOX (encoding lysyl oxidase) was one of the upregulated genes with a potential impact on the course of S. aureus infection. LOX is an amine oxidase required for biosynthetic cross-linking of extracellular matrix components. LOX was upregulated in vitro in different cell cultures infected with S. aureus and also in vivo, in kidney abscesses of mice intravenously infected with S. aureus and in clinical skin samples from patients with S. aureus infections. Inhibition of LOX by ß-aminopropionitrile (BAPN) did not affect the bacterial load in kidneys or blood but significantly influenced abscess morphology and collagenization. Our data provide evidence for a crucial role of HIF-1-regulated LOX in abscess formation.


Assuntos
Abscesso/microbiologia , Proteínas da Matriz Extracelular/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Proteína-Lisina 6-Oxidase/metabolismo , Infecções Estafilocócicas/patologia , Abscesso/patologia , Aminopropionitrilo/farmacologia , Animais , Carga Bacteriana , Modelos Animais de Doenças , Proteínas da Matriz Extracelular/antagonistas & inibidores , Proteínas da Matriz Extracelular/genética , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Células Hep G2 , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Imuno-Histoquímica , Queratinócitos/microbiologia , Queratinócitos/patologia , Rim/microbiologia , Rim/patologia , Camundongos , Proteína-Lisina 6-Oxidase/antagonistas & inibidores , Proteína-Lisina 6-Oxidase/genética , Pele/microbiologia , Pele/patologia , Infecções Estafilocócicas/microbiologia
13.
J Biol Chem ; 286(2): 909-18, 2011 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-21071451

RESUMO

The lysyl oxidase family is made up of five members: lysyl oxidase (LOX) and lysyl oxidase-like 1-4 (LOXL1-LOXL4). All members share conserved C-terminal catalytic domains that provide for lysyl oxidase or lysyl oxidase-like enzyme activity; and more divergent propeptide regions. LOX family enzyme activities catalyze the final enzymatic conversion required for the formation of normal biosynthetic collagen and elastin cross-links. The importance of lysyl oxidase enzyme activity to normal bone development has long been appreciated, but regulation and roles for specific LOX isoforms in bone formation in vivo is largely unexplored. Fracture healing recapitulates aspects of endochondral bone development. The present study first investigated the expression of all LOX isoforms in fracture healing. A remarkable coincidence of LOXL2 expression with the chondrogenic phase of fracture healing was found, prompting more detailed analyses of LOXL2 expression in normal growth plates, and LOXL2 expression and function in developing ATDC5 chondrogenic cells. Data show that LOXL2 is expressed by pre-hypertrophic and hypertrophic chondrocytes in vivo, and that LOXL2 expression is regulated in vitro as a function of chondrocyte differentiation. Moreover, LOXL2 knockdown studies in vitro show that LOXL2 expression is required for ATDC5 chondrocyte cell line differentiation through regulation of SNAIL and SOX9, important transcription factors that control chondrocyte differentiation. Taken together, data provide evidence that LOXL2, like LOX, is a multifunctional protein. LOXL2 promotes chondrocyte differentiation by mechanisms that are likely to include roles as both a regulator and an effector of chondrocyte differentiation.


Assuntos
Aminoácido Oxirredutases/metabolismo , Condrócitos/citologia , Condrócitos/enzimologia , Matriz Extracelular/enzimologia , Consolidação da Fratura/fisiologia , Fraturas Ósseas/metabolismo , Aminoácido Oxirredutases/genética , Animais , Diferenciação Celular/fisiologia , Células Cultivadas , Modelos Animais de Doenças , Fraturas Ósseas/patologia , Regulação Enzimológica da Expressão Gênica , Técnicas de Silenciamento de Genes , Lâmina de Crescimento/citologia , Lâmina de Crescimento/fisiologia , Isoenzimas/genética , Isoenzimas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Transcrição da Família Snail , Fatores de Transcrição/metabolismo
14.
J Biol Chem ; 286(31): 27630-8, 2011 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-21665949

RESUMO

Lysyl oxidase (LOX), a matrix cross-linking protein, is known to be selectively expressed and to enhance a fibrotic phenotype. A recent study of ours showed that LOX oxidizes the PDGF receptor-ß (PDGFR-ß), leading to amplified downstream signaling. Here, we examined the expression and functions of LOX in megakaryocytes (MKs), the platelet precursors. Cells committed to the MK lineage undergo mitotic proliferation to yield diploid cells, followed by endomitosis and acquisition of polyploidy. Intriguingly, LOX expression is detected in diploid-tetraploid MKs, but scarce in polyploid MKs. PDGFR-BB is an inducer of mitotic proliferation in MKs. LOX inhibition with ß-aminopropionitrile reduces PDGFR-BB binding to cells and downstream signaling, as well as its proliferative effect on the MK lineage. Inhibition of LOX activity has no influence on MK polyploidy. We next rationalized that, in a system with an abundance of low ploidy MKs, LOX could be highly expressed and with functional significance. Thus, we resorted to GATA-1(low) mice, where there is an increase in low ploidy MKs, augmented levels of PDGF-BB, and an extensive matrix of fibers. MKs from these mice display high expression of LOX, compared with control mice. Importantly, treatment of GATA-1(low) mice with ß-aminopropionitrile significantly improves the bone marrow fibrotic phenotype, and MK number in the spleen. Thus, our in vitro and in vivo data support a novel role for LOX in regulating MK expansion by PDGF-BB and suggest LOX as a new potential therapeutic target for myelofibrosis.


Assuntos
Medula Óssea/patologia , Megacariócitos/citologia , Mielofibrose Primária/patologia , Proteína-Lisina 6-Oxidase/metabolismo , Animais , Western Blotting , Divisão Celular , Citometria de Fluxo , Imunofluorescência , Masculino , Megacariócitos/enzimologia , Camundongos , Poliploidia , Mielofibrose Primária/terapia , Proteína-Lisina 6-Oxidase/antagonistas & inibidores , RNA Mensageiro/genética , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo
15.
J Biol Chem ; 285(10): 7384-93, 2010 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-20048148

RESUMO

Pro-lysyl oxidase is secreted as a 50-kDa proenzyme and is then cleaved to a 30-kDa mature enzyme (lysyl oxidase (LOX)) and an 18-kDa propeptide (lysyl oxidase propeptide (LOX-PP)). The presence of LOX-PP in the cell layers of phenotypically normal osteoblast cultures led us to investigate the effects of LOX-PP on osteoblast differentiation. Data indicate that LOX-PP inhibits terminal mineralization in primary calvaria osteoblast cultures when added at early stages of differentiation, with no effects seen when present at later stages. LOX-PP was found to inhibit serum- and FGF-2-stimulated DNA synthesis and FGF-2-stimulated cell growth. Enzyme-linked immunosorbent assay and Western blot analyses show that LOX-PP inhibits FGF-2-induced ERK1/2 phosphorylation, signaling events that mediate the FGF-2-induced proliferative response. LOX-PP inhibits FGF-2-stimulated phosphorylation of FRS2alpha and FGF-2-stimulated DNA synthesis, even after inhibition of sulfation of heparan sulfate proteoglycans. These data point to a LOX-PP target at or near the level of fibroblast growth factor receptor binding or activation. Ligand binding assays on osteoblast cell layers with (125)I-FGF-2 demonstrate a concentration-dependent inhibition of FGF-2 binding to osteoblasts by LOX-PP. In vitro binding assays with recombinant fibroblast growth factor receptor protein revealed that LOX-PP inhibits FGF-2 binding in an uncompetitive manner. We propose a working model for the respective roles of LOX enzyme and LOX-PP in osteoblast phenotype development in which LOX-PP may act to inhibit the proliferative response possibly to allow cells to exit from the cell cycle and progress to the next stages of differentiation.


Assuntos
Proliferação de Células , Fator 2 de Crescimento de Fibroblastos/metabolismo , Osteoblastos/fisiologia , Precursores de Proteínas/metabolismo , Proteína-Lisina 6-Oxidase/metabolismo , Transdução de Sinais/fisiologia , Células 3T3 , Animais , Calcificação Fisiológica/efeitos dos fármacos , Calcificação Fisiológica/fisiologia , Bovinos , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Células Cultivadas , DNA/biossíntese , Fator 2 de Crescimento de Fibroblastos/genética , Camundongos , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteogênese/fisiologia , Precursores de Proteínas/genética , Precursores de Proteínas/farmacologia , Proteína-Lisina 6-Oxidase/genética , Ensaio Radioligante , Ratos , Receptores de Fatores de Crescimento de Fibroblastos/genética , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Crânio/citologia
16.
Am J Pathol ; 177(1): 208-18, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20489142

RESUMO

Epithelial to mesenchymal transition (EMT) occurs normally in development. In pathology, EMT drives cancer and fibrosis. Medication with phenytoin, nifedipine, and cyclosporine-A often causes gingival overgrowth. Based partly on the histopathology of gingival overgrowth, the present study investigates the hypothesis that EMT could contribute to its development. We found that phenytoin-induced human gingival overgrowth tissues, the most fibrotic drug-induced variety, contain diminished epithelial E-cadherin expression, whereas fibroblast-specific protein-1 (FSP-1) and alphavbeta6 integrin levels are up-regulated. In connective tissue stroma, fibronectin and alternatively spliced fibronectin extra type III domain A (FN-ED-A) levels are increased in overgrowth lesions. Transforming growth factor (TGF)-beta1 treatment of primary human gingival epithelial cells cultured in transwell plates resulted in inhibited barrier function as determined by reduced electrical resistance, paracellular permeability assays, and cell surface E-cadherin expression. Moreover, TGF-beta1 altered the expression of other markers of EMT determined at the mRNA and protein levels: E-cadherin decreased, whereas SLUG, fibronectin, matrix metalloproteinase (MMP)2, MMP9, and MMP13 increased. Nifedipine- and cyclosporine A-induced gingival overgrowth tissues similarly contain diminished E-cadherin and elevated levels of FSP-1 and fibronectin, but normal levels of alphavbeta6 integrin. In summary, data in vitro support that human gingival epithelial cells undergo functional and gene expression changes consistent with EMT in response to TGF-beta1, and in vivo studies show that important EMT markers occur in clinical gingival overgrowth tissues. These findings support the hypothesis that EMT likely occurs in drug-induced gingival overgrowth.


Assuntos
Transição Epitelial-Mesenquimal/fisiologia , Crescimento Excessivo da Gengiva/patologia , Animais , Anticonvulsivantes/efeitos adversos , Antígenos de Neoplasias/metabolismo , Caderinas/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Células Cultivadas , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Fibronectinas/metabolismo , Fibrose/patologia , Gengiva/citologia , Gengiva/metabolismo , Gengiva/patologia , Crescimento Excessivo da Gengiva/induzido quimicamente , Crescimento Excessivo da Gengiva/metabolismo , Humanos , Integrinas/metabolismo , Fenitoína/efeitos adversos , Proteína A4 de Ligação a Cálcio da Família S100 , Fator de Crescimento Transformador beta1/metabolismo
17.
Bone Rep ; 14: 101063, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33981809

RESUMO

Osteoblast lysyl oxidase (LOX) is a strongly up-regulated mRNA and protein by the glucose-dependent insulinotropic polypeptide (GIP). LOX is critically required for collagen maturation, and was shown to be dramatically down-regulated in a mouse model of type 1 diabetes, consistent with known low collagen cross-linking and poor bone quality in diabetic bone disease in humans and in mouse models. GIP is a gastric hormone released by the gut upon consumption of nutrients, which then stimulates insulin release from ß-cells in the pancreas. GIP is directly anabolic to osteoblasts and to bone, while gut-derived dopamine attenuates effects of GIP on osteoblast anabolic pathways, including LOX expression. GIP-stimulation of LOX expression was shown to be dependent on increased cAMP levels and protein kinase A activity, consistent with the fact that GIP receptors are G protein coupled receptors. Downstream signaling events resulting in increased LOX expression remain, however, unexplored. Here we provide evidence for ß-catenin mediation of signaling from GIP to increase LOX expression. Moreover, we have identified a TCF/LEF element in the Lox promoter that is required for GIP-upregulation of LOX. These findings will be of importance in designing potential therapeutic approaches to address deficient LOX production in diabetic bone disease by pointing to the importance of exploring strategies to stimulate ß-catenin signaling in osteoblasts under diabetic conditions as potential therapeutic strategies.

18.
Biochemistry ; 49(13): 2962-72, 2010 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-20192271

RESUMO

Lysyl oxidase enzyme activity is critical for the biosynthesis of mature and functional collagens and elastin. In addition, lysyl oxidase has tumor suppressor activity that has been shown to depend on the propeptide region (LOX-PP) derived from pro-lysyl oxidase (Pro-LOX) and not on lysyl oxidase enzyme activity. Pro-LOX is secreted as a 50 kDa proenzyme and then undergoes biosynthetic proteolytic processing to active approximately 30 kDa LOX enzyme and LOX-PP. The present study reports the efficient recombinant expression and purification of rat LOX-PP. Moreover, using enzymatic deglycosylation and DTT derivatization combined with mass spectrometry technologies, it is shown for the first time that rLOX-PP and naturally occurring LOX-PP contain both N- and O-linked carbohydrates. Structure predictions furthermore suggest that LOX-PP is a mostly disordered protein, which was experimentally confirmed in circular dichroism studies. Due to its high isoelectric point and its disordered structure, we propose that LOX-PP can associate with extracellular and intracellular binding partners to affect its known biological activities as a tumor suppressor and inhibitor of cell proliferation.


Assuntos
Proteína-Lisina 6-Oxidase/química , Animais , Dicroísmo Circular , Clonagem Molecular/métodos , Precursores Enzimáticos , Glicosilação , Espectrometria de Massas , Ligação Proteica , Conformação Proteica , Proteína-Lisina 6-Oxidase/genética , Proteína-Lisina 6-Oxidase/isolamento & purificação , Ratos , Proteínas Recombinantes
19.
J Cell Biochem ; 111(5): 1231-43, 2010 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-20717923

RESUMO

Lysyl oxidase (LOX) is secreted as a proenzyme (proLOX) that is proteolytically processed in the extracellular milieu to release the propeptide and mature, active LOX. LOX oxidizes lysyl residues of a number of protein substrates in the extracellular matrix and on the cell surface, which impacts several physiological and disease states. Although the LOX propeptide (LOX-PP) is glycosylated, little is known about the role of this modification in LOX secretion and activity. To gain insight into this issue, cells were transfected with native, full-length LOX cDNA (pre-pro-LOX), the N-glycosylation null pre-[N/Q]pro-LOX cDNA and the deletion mutant pre-LOX cDNA, referred to as secretory LOX, in which mature LOX is targeted to the secretory pathway without its N-terminal propeptide sequence. The results show that glycosylation of the LOX-PP is not required for secretion and extracellular processing of pro-LOX but it is required for optimal enzyme activity of the resulting mature LOX. Complete deletion of the propeptide sequence prevents mature LOX from exiting the endoplasmic reticulum (ER). Taken together, our study points out the requirement of the LOX-PP for pro-LOX exit from the ER and is the first to highlight the influence of LOX-PP glycosylation on LOX enzyme activity.


Assuntos
Precursores Enzimáticos/metabolismo , Proteína-Lisina 6-Oxidase/metabolismo , Deleção de Sequência , Animais , Células CHO , Cricetinae , Cricetulus , DNA Complementar , Retículo Endoplasmático/metabolismo , Glicosilação , Humanos , Transporte Proteico , Proteína-Lisina 6-Oxidase/genética , Transfecção
20.
J Cell Biochem ; 111(5): 1160-8, 2010 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-20717927

RESUMO

RAS mutations or its activation by upstream receptor tyrosine kinases are frequently associated with poor response of carcinomas to chemotherapy. The 18 kDa propeptide domain of lysyl oxidase (LOX-PP) released from the secreted precursor protein (Pro-LOX) has been shown to inhibit RAS signaling and the transformed phenotype of breast, pancreatic, lung, and prostate cancer cells in culture, and formation of tumors by Her-2/neu-driven breast cancer cells in a mouse xenograft model. Here, we tested the effects of LOX-PP on MIA PaCa-2 pancreatic cancer cells, driven by mutant RAS. In MIA PaCa-2 cells in culture, LOX-PP attenuated the ERK and AKT activities and decreased the levels of the NF-κB p65 and RelB subunits and cyclin D1, which are activated by RAS signaling. In mouse xenograft growth, LOX-PP reduced growth of tumors by these pancreatic cancer cells, and the nuclear levels of the p65 NF-κB subunit and cyclin D1 proteins. While biological agents attenuate tumor growth when used alone, often they have additive or synergistic effects when used in combination with chemotherapeutic agents. Thus, we next tested the hypotheses that LOX-PP sensitizes pancreatic and breast cancer cells to the chemotherapeutic agent doxorubicin. Purified LOX-PP enhanced the cytotoxic effects of doxorubicin in pancreatic and breast cancer cells, as judged by ATP production, Cell Death ELISA assays, caspase 3 activation, PARP cleavage, and Annexin V staining. Thus, LOX-PP potentiates the cytotoxicity of doxorubicin on breast and pancreatic cancer cells, warranting additional studies with a broader spectrum of current cancer treatment modalities.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Pancreáticas/tratamento farmacológico , Proteína-Lisina 6-Oxidase/farmacologia , Animais , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Precursores Enzimáticos , Feminino , Humanos , Masculino , Camundongos , Neoplasias Pancreáticas/patologia , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA