Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ultrason Imaging ; 46(3): 151-163, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38497455

RESUMO

This work measures temporal signal-to-noise ratio (SNR) thresholds that indicate when random noise during ultrasound scanning becomes imperceptible to expert human observers. Visible noise compromises image quality and can potentially lead to non-diagnostic scans. Noise can arise from both stable acoustic sources (clutter) or randomly varying electronic sources (temporal noise). Extensive engineering effort has focused on decreasing noise in both of these categories. In this work, an observer study with five practicing sonographers was performed to assess sonographer sensitivity to temporal noise in ultrasound cine clips. Understanding the conditions where temporal noise is no longer visible during ultrasound imaging can inform engineering efforts seeking to minimize the impact this noise has on image quality. The sonographers were presented with paired temporal noise-free and noise-added simulated speckle cine clips and asked to select the noise-added clips. The degree of motion in the imaging target was found to have a significant effect on the SNR levels where noise was perceived, while changing imaging frequency had little impact. At realistic in vivo motion levels, temporal noise was not perceived in cine clips at and above 28 dB SNR. In a case study presented here, the potential of adaptive intensity adjustment based on this noise perception threshold is validated in a fetal imaging scenario. This study demonstrates how noise perception thresholds can be applied to help design or tune ultrasound systems for different imaging tasks and noise conditions.


Assuntos
Razão Sinal-Ruído , Ultrassonografia , Humanos , Ultrassonografia/métodos , Variações Dependentes do Observador , Feminino
2.
J Ultrasound Med ; 38(5): 1167-1177, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30218456

RESUMO

OBJECTIVES: Intraventricular pressure (IVP) is one of the most important measurements for evaluating cardiac function, but this measurement is not currently easily assessable in the clinic. The primary reason for this is the absence of a noninvasive technique for measuring IVP. In this study, we investigate the relationship between IVP and dynamic myocardial stiffness measured by shear wave elasticity imaging (SWEI) and assess the feasibility of measuring IVP using SWEI. METHODS: In 8 isolated working rabbit hearts, IVP was recorded in the left ventricle using a pressure catheter. Simultaneously, myocardial stiffness was recorded by SWEI. Using the peak values for IVP and SWEI measured stiffness, SWEI measurements were calibrated and converted to IVP. RESULTS: A linear relationship with zero intercept was observed between IVP and SWEI, with the average slope of 0.318 kPa/mm Hg, R2 = 0.89. Using one point on the IVP/SWEI curve, SWEI measurements were converted to IVP. Estimated pressure using SWEI and IVP were linearly correlated with the slope of 0.95, R2 = 0.88 (mean end diastolic pressure by pressure catheter = 12.716 mm Hg and by SWEI=14.726 mm Hg), indicating the near equivalence of the 2 measurements. CONCLUSION: We have shown that SWEI measurements are linearly related to IVP; therefore, pressure-based indices could potentially be derived from SWEI ultrasound elastography. The feasibility of using SWEI to estimate IVP with a single point calibration was also shown in this study.


Assuntos
Técnicas de Imagem por Elasticidade/métodos , Coração/diagnóstico por imagem , Coração/fisiologia , Pressão Ventricular/fisiologia , Animais , Estudos de Viabilidade , Coração/fisiopatologia , Modelos Animais , Coelhos
3.
J Acoust Soc Am ; 146(3): 1721, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31590494

RESUMO

The van Cittert-Zernike (VCZ) theorem describes the propagation of spatial covariance from an incoherent source distribution, such as backscatter from stochastic targets in pulse-echo imaging. These stochastic targets are typically assumed statistically stationary and spatially incoherent with uniform scattering strength. In this work, the VCZ theorem is applied to a piecewise-stationary scattering model. Under this framework, the spatial covariance of the received echo data is demonstrated as the linear superposition of covariances from distinct spatial regions. This theory is analytically derived from fundamental physical principles, and validated through simulation studies demonstrating superposition and scaling. Simulations show that linearity is preserved over various depths and transmit apodizations, and in the presence of noise. These results provide a general framework to decompose spatial covariance into contributions from distinct regions of interest, which may be applied to advanced imaging methods. While the simulation tools used for validation are specific to ultrasound, this analysis is generally applicable to other coherent imaging applications involving stochastic targets. This covariance decomposition provides the physical basis for a recently described imaging method, Multi-covariate Imaging of Sub-resolution Targets.


Assuntos
Modelos Teóricos , Ondas Ultrassônicas , Processos Estocásticos
4.
Ultrason Imaging ; 40(4): 215-231, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29683052

RESUMO

Transmit beamforming has a strong impact on several factors that govern image quality, field-of-view, and frame-rate in ultrasound imaging. For cardiac applications, the visualization of fine structures and the ability to track their motion is equally important. Consequently, beamforming choices for echocardiography aim to optimize these trade-offs. Acoustic clutter can dramatically impact image quality and degrade the diagnostic value of cardiac ultrasound imaging. Clutter levels, however, are closely tied to the choice of beamforming configuration. This study aims to quantify the impact of transmit beamforming on clutter levels under in vivo conditions. The performance of focused as well as plane wave transmit configurations in fundamental and harmonic modes is evaluated under matched conditions. Contrast between the cardiac chambers and the interventricular septum is used as a surrogate for the level of clutter in a given imaging scenario. Under in vivo conditions, contrast was found to improve incrementally across the four beamforming configurations in the following order: fundamental-plane, fundamental-focused, harmonic-plane, and harmonic-focused. Using the fundamental-focused configuration as a reference, the harmonic-plane and harmonic-focused cases showed improvements in median contrast of 2.97 dB and 6.1 dB, respectively, while the fundamental-plane case showed a contrast deterioration of 1.23 dB. Contrast was also found to vary systematically as a function of imaging depth. Median contrast for the right ventricle (shallow chamber) was measured to be 2.96 dB lower than that in the left ventricle (deep chamber).


Assuntos
Ecocardiografia/métodos , Ventrículos do Coração/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Processamento de Sinais Assistido por Computador , Adulto , Feminino , Humanos , Masculino , Valores de Referência , Razão Sinal-Ruído , Adulto Jovem
5.
J Cardiovasc Electrophysiol ; 26(9): 1009-1018, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25970142

RESUMO

INTRODUCTION: Elastography imaging can provide radiofrequency ablation (RFA) lesion assessment due to tissue stiffening at the ablation site. An important aspect of assessment is the spatial and temporal stability of the region of stiffness increase in the peri-ablation period. The aim of this study was to use 2 ultrasound-based elastography techniques, shear wave elasticity imaging (SWEI) and acoustic radiation force impulse (ARFI) imaging, to monitor the evolution of tissue stiffness at ablation sites in the 30 minutes following lesion creation. METHODS AND RESULTS: In 6 canine subjects, SWEI measurements and 2-D ARFI images were acquired at 6 ventricular endocardial RFA sites before, during, and for 30 minutes postablation. An immediate increase in tissue stiffness was detected during RFA, and the area of the postablation region of stiffness increase (RoSI) as well as the relative stiffness at the RoSI center was stable approximately 2 minutes after ablation. Of note is the observation that relative stiffness in the region adjacent to the RoSI increased slightly during the first 15 minutes, consistent with local fluid displacement or edema. The magnitude of this increase, ∼0.5-fold from baseline, was significantly less than the magnitude of the stiffness increase directly inside the RoSI, which was greater than 3-fold from baseline. CONCLUSIONS: Ultrasound-based SWEI and ARFI imaging detected an immediate increase in tissue stiffness during RFA, and the stability and magnitude of the stiffness change suggest that consistent elasticity-based lesion assessment is possible 2 minutes after and for at least 30 minutes following ablation.

6.
J Acoust Soc Am ; 137(1): 132-8, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25618045

RESUMO

Ultrasonic echoes backscattered from diffuse media, recorded by an array transducer and appropriately focused, demonstrate coherence predicted by the van Cittert-Zernike theorem. Additive noise signals from off-axis scattering, reverberation, phase aberration, and electronic (thermal) noise can all superimpose incoherent or partially coherent signals onto the recorded echoes, altering the measured coherence. An expression is derived to describe the effect of uncorrelated random channel noise in terms of the noise-to-signal ratio. Equivalent descriptions are made in the aperture dimension to describe uncorrelated magnitude and phase apodizations of the array. Binary apodization is specifically described as an example of magnitude apodization and adjustments are presented to minimize the artifacts caused by finite signal length. The effects of additive noise are explored in short-lag spatial coherence imaging, an image formation technique that integrates the calculated coherence curve of acquired signals up to a small fraction of the array length for each lateral and axial location. A derivation of the expected contrast as a function of noise-to-signal ratio is provided and validation is performed in simulation.


Assuntos
Ruído , Transdutores , Ondas Ultrassônicas , Algoritmos , Simulação por Computador , Desenho de Equipamento , Modelos Teóricos , Razão Sinal-Ruído , Tempo
7.
J Cardiovasc Electrophysiol ; 25(12): 1275-83, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25132292

RESUMO

BACKGROUND: Visual confirmation of radiofrequency ablation (RFA) lesions during clinical cardiac ablation procedures could improve procedure efficacy, safety, and efficiency. It was previously shown that acoustic radiation force impulse (ARFI) imaging can identify RFA lesions in vitro and in vivo in an animal model. This is the "first-in-human" feasibility demonstration of intracardiac ARFI imaging of RFA lesions in patients undergoing catheter ablation for atrial flutter (AFL) or atrial fibrillation (AF). METHODS AND RESULTS: Patients scheduled for right atrial (RA) ablation for AFL or left atrial (LA) ablation for drug refractory AF were eligible for imaging. Diastole-gated intracardiac ARFI images were acquired using one of two equipment configurations: (1) a Siemens ACUSON S2000™ ultrasound scanner and 8/10Fr AcuNav™ ultrasound catheter, or (2) a CARTO 3™ integrated Siemens SC2000™ and 10Fr SoundStar™ ultrasound catheter. A total of 11 patients (AFL = 3; AF = 8) were imaged. ARFI images were acquired of ablation target regions, including the RA cavotricuspid isthmus (CTI), and the LA roof, pulmonary vein ostia, posterior wall, posterior mitral valve annulus, and the ridge between the pulmonary vein and LA appendage. ARFI images revealed increased relative myocardial stiffness at ablation catheter contact sites after RFA and at anatomical mapping-tagged RFA treatment sites. CONCLUSIONS: ARFI images from a pilot group of patients undergoing catheter ablation for AFL and AF demonstrate the ability of this technique to identify intra-procedure RFA lesion formation. The results encourage further refinement of ARFI imaging clinical tools and continued investigation in larger clinical trials.


Assuntos
Fibrilação Atrial/diagnóstico por imagem , Fibrilação Atrial/cirurgia , Procedimentos Cirúrgicos Cardiovasculares/métodos , Ablação por Cateter/métodos , Técnicas de Imagem por Elasticidade/métodos , Cirurgia Assistida por Computador/métodos , Sistemas Computacionais , Ecocardiografia/métodos , Estudos de Viabilidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Resultado do Tratamento
8.
Ultrason Imaging ; 36(2): 133-48, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24554293

RESUMO

We have previously shown that intracardiac acoustic radiation force impulse (ARFI) imaging visualizes tissue stiffness changes caused by radiofrequency ablation (RFA). The objectives of this in vivo study were to (1) quantify measured ARFI-induced displacements in RFA lesion and unablated myocardium and (2) calculate the lesion contrast (C) and contrast-to-noise ratio (CNR) in two-dimensional ARFI and conventional intracardiac echo images. In eight canine subjects, an ARFI imaging-electroanatomical mapping system was used to map right atrial ablation lesion sites and guide the acquisition of ARFI images at these sites before and after ablation. Readers of the ARFI images identified lesion sites with high sensitivity (90.2%) and specificity (94.3%) and the average measured ARFI-induced displacements were higher at unablated sites (11.23 ± 1.71 µm) than at ablated sites (6.06 ± 0.94 µm). The average lesion C (0.29 ± 0.33) and CNR (1.83 ± 1.75) were significantly higher for ARFI images than for spatially registered conventional B-mode images (C = -0.03 ± 0.28, CNR = 0.74 ± 0.68).


Assuntos
Ablação por Cateter/métodos , Técnicas de Imagem por Elasticidade/métodos , Aumento da Imagem/métodos , Processamento de Imagem Assistida por Computador/métodos , Animais , Procedimentos Cirúrgicos Cardíacos/métodos , Cães , Átrios do Coração/diagnóstico por imagem , Masculino , Sensibilidade e Especificidade
9.
Artigo em Inglês | MEDLINE | ID: mdl-38758627

RESUMO

This work proposes a novel method of temporal signal-to-noise ratio (SNR) guided adaptive acoustic output adjustment and demonstrates this approach during in vivo fetal imaging. Acoustic output adjustment is currently the responsibility of sonographers, but ultrasound safety studies show recommended ALARA (As Low As Reasonably Achievable) practices are inconsistently followed. This study explores an automated ALARA method that adjusts the Mechanical Index (MI) output, targeting imaging conditions matching the temporal noise perception threshold. A 28 dB threshold SNR is used as the target SNR, following prior work showing relevant noise quantities are imperceptible once this image data quality level is reached. After implementing adaptive output adjustment on a clinical system, the average MI required to achieve 28 dB SNR in an eleven-volunteer fetal abdomen imaging test ranged from 0.17 to 0.26. The higher MI levels were required when imaging at higher frequencies. During tests with 20-second MI adjustment imaging periods, the degree of motion impacted the adaptive performance. For stationary imaging views, target SNR levels were maintained in 90% of SNR evaluations. When scanning between targets the imaging conditions were more variable, but the target SNR was still maintained in 71% of the evaluations. Given the relatively low MI recommended when performing MI adjustment and the successful adjustment of MI in response to changing imaging conditions, these results encourage adoption of adaptive acoustic output approaches guided by temporal SNR.

10.
Artigo em Inglês | MEDLINE | ID: mdl-37028314

RESUMO

Deep abdominal images suffer from poor diffraction-limited lateral resolution. Extending the aperture size can improve resolution. However, phase distortion and clutter can limit the benefits of larger arrays. Previous studies have explored these effects using numerical simulations, multiple transducers, and mechanically swept arrays. In this work, we used an 8.8-cm linear array transducer to investigate the effects of aperture size when imaging through the abdominal wall. We acquired channel data in fundamental and harmonic modes using five aperture sizes. To avoid motion and increase the parameter sampling, we decoded the full-synthetic aperture data and retrospectively synthesized nine apertures (2.9-8.8 cm). We imaged a wire target and a phantom through ex vivo porcine abdominal samples and scanned the livers of 13 healthy subjects. We applied bulk sound speed correction to the wire target data. Although point resolution improved from 2.12 to 0.74 mm at 10.5 cm depth, contrast resolution often degraded with aperture size. In subjects, larger apertures resulted in an average maximum contrast degradation of 5.5 dB at 9-11 cm depth. However, larger apertures often led to visual detection of vascular targets unseen with conventional apertures. An average 3.7-dB contrast improvement over fundamental mode in subjects showed that the known benefits of tissue-harmonic imaging extend to larger arrays.


Assuntos
Fígado , Transdutores , Animais , Suínos , Ultrassonografia/métodos , Estudos Retrospectivos , Imagens de Fantasmas , Fígado/diagnóstico por imagem
11.
Ultrasound Med Biol ; 49(8): 1719-1727, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37149428

RESUMO

OBJECTIVE: Increased myocardial stiffness (MS) is an important hallmark of cardiac amyloidosis (CA) caused by myocardial amyloid deposition. Standard echocardiography metrics assess MS indirectly via downstream effects of cardiac stiffening. The ultrasound elastography methods acoustic radiation force impulse (ARFI) and natural shear wave (NSW) imaging assess MS more directly. METHODS: This study compared MS in 12 healthy volunteers and 13 patients with confirmed CA using ARFI and NSW imaging. Parasternal long-axis acquisitions of the interventricular septum were obtained using a modified Acuson Sequoia scanner and a 5V1 transducer. ARFI-induced displacements were measured through the cardiac cycle, and ratios of diastolic-over-systolic displacement were calculated. NSW speeds from aortic valve closure were extracted from echocardiography-tracked displacement data. RESULTS: ARFI stiffness ratios were significantly lower in CA patients than controls (mean ± standard deviation: 1.47 ± 0.27 vs. 2.10 ± 0.47, p < 0.001), and NSW speeds were significantly higher in CA patients than controls (5.58 ± 1.10 m/s vs. 3.79 ± 1.10 m/s, p < 0.001). A linear combination of the two metrics exhibited greater diagnostic potential than either metric alone (area under the curve = 0.97 vs. 0.89 and 0.88). CONCLUSION: MS was measured to be significantly higher in CA patients using both ARFI and NSW imaging. Together, these methods have potential utility to aid in clinical diagnosis of diastolic dysfunction and infiltrative cardiomyopathies.


Assuntos
Amiloidose , Técnicas de Imagem por Elasticidade , Humanos , Ultrassonografia , Técnicas de Imagem por Elasticidade/métodos , Valva Aórtica , Amiloidose/diagnóstico por imagem , Acústica
12.
Artigo em Inglês | MEDLINE | ID: mdl-34437060

RESUMO

Diffuse reverberation clutter often significantly degrades the visibility of abdominal structures. Reverberation clutter acts as a temporally stationary haze that originates from the multiple scattering within the subcutaneous layers and has a narrow spatial correlation length. We recently presented an adaptive beamforming technique, Lag-one Spatial Coherence Adaptive Normalization (LoSCAN), which can recover the contrast suppressed by incoherent noise. LoSCAN successfully suppressed reverberation clutter in numerous clinical examples. However, reverberation clutter is a 3-D phenomenon and can often exhibit a finite partial correlation between receive channels. Due to a strict noise-incoherence assumption, LoSCAN does not eliminate correlated reverberation clutter. This work presents a 2-D matrix array-based LoSCAN method and evaluates matrix-LoSCAN-based strategies to suppress partially correlated reverberation clutter. We validated the proposed matrix LoSCAN method using Field II simulations of a 64×64 symmetric 2-D array. We show that a subaperture beamforming (SAB) method tuned to the direction of noise correlation is an effective method to enhance LoSCAN's performance. We evaluated the efficacy of the proposed methods using fundamental and harmonic channel data acquired from the liver of two healthy volunteers using a 64×16 custom 2-D array. Compared to azimuthal LoSCAN, the proposed approach increased the contrast by up to 5.5 dB and the generalized contrast-to-noise ratio (gCNR) by up to 0.07. We also present analytic models to understand the impact of partially correlated reverberation clutter on LoSCAN images and explain the proposed methods' mechanism of image quality improvement.


Assuntos
Fígado , Humanos , Fígado/diagnóstico por imagem , Imagens de Fantasmas , Razão Sinal-Ruído , Ultrassonografia
13.
Artigo em Inglês | MEDLINE | ID: mdl-36712828

RESUMO

Conventional color flow processing is associated with a high degree of operator dependence, often requiring the careful tuning of clutter filters and priority encoding to optimize the display and accuracy of color flow images. In a companion paper, we introduced a novel framework to adapt color flow processing based on local measurements of backscatter spatial coherence. Through simulation studies, the adaptive selection of clutter filters using coherence image quality characterization was demonstrated as a means to dynamically suppress weakly-coherent clutter while preserving coherent flow signal in order to reduce velocity estimation bias. In this study, we extend previous work to evaluate the application of coherence-adaptive clutter filtering (CACF) on experimental data acquired from both phantom and in vivo liver and fetal vessels. In phantom experiments with clutter-generating tissue, CACF was shown to increase the dynamic range of velocity estimates and decrease bias and artifact from flash and thermal noise relative to conventional color flow processing. Under in vivo conditions, such properties allowed for the direct visualization of vessels that would have otherwise required fine-tuning of filter cutoff and priority thresholds with conventional processing. These advantages are presented alongside various failure modes identified in CACF as well as discussions of solutions to mitigate such limitations.

14.
Artigo em Inglês | MEDLINE | ID: mdl-36712829

RESUMO

The appropriate selection of a clutter filter is critical for ensuring the accuracy of velocity estimates in ultrasound color flow imaging. Given the complex spatio-temporal dynamics of flow signal and clutter, however, the manual selection of filters can be a significant challenge, increasing the risk for bias and variance introduced by the removal of flow signal and/or poor clutter suppression. We propose a novel framework to adaptively select clutter filter settings based on color flow image quality feedback derived from the spatial coherence of ultrasonic backscatter. This framework seeks to relax assumptions of clutter magnitude and velocity that are traditionally required in existing adaptive filtering methods to generalize clutter filtering to a wider range of clinically-relevant color flow imaging conditions. In this study, the relationship between color flow velocity estimation error and the spatial coherence of clutter filtered channel signals was investigated in Field II simulations for a wide range of flow and clutter conditions. This relationship was leveraged in a basic implementation of coherence-adaptive clutter filtering (CACF) designed to dynamically adapt clutter filters at each imaging pixel and frame based on local measurements of spatial coherence. In simulation studies with known scatterer and clutter motion, CACF was demonstrated to reduce velocity estimation bias while maintaining variance on par with conventional filtering.

15.
Artigo em Inglês | MEDLINE | ID: mdl-35613063

RESUMO

Multi-covariate imaging of sub-resolution targets (MIST) is a statistical, model-based image formation technique that smooths speckles and reduces clutter. MIST decomposes the measured covariance of the element signals into modeled contributions from mainlobe, sidelobes, and noise. MIST covariance models are derived from the well-known autocorrelation relationship between transmit apodization and backscatter covariance. During in vivo imaging, the effective transmit aperture often deviates from the applied apodization due to nonlinear propagation and wavefront aberration. Previously, the backscatter correlation length provided a first-order measure of these patient-specific effects. In this work, we generalize and extend this approach by developing data-adaptive covariance estimation, parameterization, and model-formation techniques. We performed MIST imaging using these adaptive models and evaluated the performance gains using 152 tissue-harmonic scans of fetal targets acquired from 15 healthy pregnant subjects. Compared to standard MIST imaging, the contrast-to-noise ratio (CNR) is improved by a median of 8.3%, and the speckle signal-to-noise ratio (SNR) is improved by a median of 9.7%. The median CNR and SNR gains over B-mode are improved from 29.4% to 40.4% and 24.7% to 38.3%, respectively. We present a versatile empirical function that can parameterize an arbitrary speckle covariance and estimate the effective coherent aperture size and higher order coherence loss. We studied the performance of the proposed methods as a function of input parameters. The implications of system-independent MIST implementation are discussed.


Assuntos
Imagens de Fantasmas , Feminino , Humanos , Gravidez , Razão Sinal-Ruído , Ultrassonografia/métodos
16.
Artigo em Inglês | MEDLINE | ID: mdl-35507609

RESUMO

The objective of this work was to develop an automated region of the interest selection method to use for adaptive imaging. The as low as reasonably achievable (ALARA) principle is the recommended framework for setting the output level of diagnostic ultrasound devices, but studies suggest that it is not broadly observed. One way to address this would be to adjust output settings automatically based on image quality feedback, but a missing link is determining how and where to interrogate the image quality. This work provides a method of region of interest selection based on standard, envelope-detected image data that are readily available on ultrasound scanners. Image brightness, the standard deviation of the brightness values, the speckle signal-to-noise ratio, and frame-to-frame correlation were considered as image characteristics to serve as the basis for this selection method. Region selection with these filters was compared to results from image quality assessment at multiple acoustic output levels. After selecting the filter values based on data from 25 subjects, testing on ten reserved subjects' data produced a positive predictive value of 94% using image brightness, the speckle signal-to-noise ratio, and frame-to-frame correlation. The best case filter values for using only image brightness and speckle signal-to-noise ratio had a positive predictive value of 97%. These results suggest that these simple methods of filtering could select reliable regions of interest during live scanning to facilitate adaptive ALARA imaging.


Assuntos
Algoritmos , Humanos , Razão Sinal-Ruído , Ultrassonografia/métodos
17.
Vasc Med ; 16(4): 302-11, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21447606

RESUMO

Stroke is the third leading cause of death and long-term disability in the USA. Currently, surgical intervention decisions in asymptomatic patients are based upon the degree of carotid artery stenosis. While there is a clear benefit of endarterectomy for patients with severe (> 70%) stenosis, in those with high/moderate (50-69%) stenosis the evidence is less clear. Evidence suggests ischemic stroke is associated less with calcified and fibrous plaques than with those containing softer tissue, especially when accompanied by a thin fibrous cap. A reliable mechanism for the identification of individuals with atherosclerotic plaques which confer the highest risk for stroke is fundamental to the selection of patients for vascular interventions. Acoustic radiation force impulse (ARFI) imaging is a new ultrasonic-based imaging method that characterizes the mechanical properties of tissue by measuring displacement resulting from the application of acoustic radiation force. These displacements provide information about the local stiffness of tissue and can differentiate between soft and hard areas. Because arterial walls, soft tissue, atheromas, and calcifications have a wide range in their stiffness properties, they represent excellent candidates for ARFI imaging. We present information from early phantom experiments and excised human limb studies to in vivo carotid artery scans and provide evidence for the ability of ARFI to provide high-quality images which highlight mechanical differences in tissue stiffness not readily apparent in matched B-mode images. This allows ARFI to identify soft from hard plaques and differentiate characteristics associated with plaque vulnerability or stability.


Assuntos
Artéria Carótida Interna/diagnóstico por imagem , Estenose das Carótidas/diagnóstico por imagem , Técnicas de Imagem por Elasticidade/métodos , Placa Aterosclerótica/diagnóstico por imagem , Ultrassom , Adulto , Estenose das Carótidas/complicações , Estenose das Carótidas/cirurgia , Progressão da Doença , Técnicas de Imagem por Elasticidade/instrumentação , Humanos , Masculino , Seleção de Pacientes , Imagens de Fantasmas , Placa Aterosclerótica/complicações , Placa Aterosclerótica/cirurgia , Valor Preditivo dos Testes , Medição de Risco , Fatores de Risco , Índice de Gravidade de Doença , Acidente Vascular Cerebral/etiologia , Ultrassom/instrumentação
18.
Artigo em Inglês | MEDLINE | ID: mdl-33417541

RESUMO

The development of adaptive imaging techniques is contingent on the accurate and repeatable characterization of ultrasonic image quality. Adaptive transmit frequency selection, filtering, and frequency compounding all offer the ability to improve target conspicuity by balancing the effects of imaging resolution, the signal-to-clutter ratio, and speckle texture, but these strategies rely on the ability to capture image quality at each desired frequency. We investigate the use of broadband linear frequency-modulated transmissions, also known as chirps, to expedite the interrogation of frequency-dependent tissue spatial coherence for real-time implementations of frequency-based adaptive imaging strategies. Chirp-collected measurements of coherence are compared to those acquired by individually transmitted conventional pulses over a range of fundamental and harmonic frequencies, in order to evaluate the ability of chirps to recreate conventionally acquired coherence. Simulation and measurements in a uniform phantom free of acoustic clutter indicate that chirps replicate not only the mean coherence in a region-of-interest but also the distribution of coherence values over frequency. Results from acquisitions in porcine abdominal and human liver models show that prediction accuracy improves with chirp length. Chirps are also able to predict frequency-dependent decreases in coherence in both porcine abdominal and human liver models for fundamental and pulse inversion harmonic imaging. This work indicates that the use of chirps is a viable strategy to improve the efficiency of variable frequency coherence mapping, thus presenting an avenue for real-time implementations for frequency-based adaptive strategies.


Assuntos
Acústica , Processamento de Sinais Assistido por Computador , Animais , Simulação por Computador , Humanos , Imagens de Fantasmas , Suínos , Ultrassom
19.
J Cardiovasc Electrophysiol ; 21(5): 557-63, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20021518

RESUMO

INTRODUCTION: Lesion placement and transmurality are critical factors in the success of cardiac transcatheter radiofrequency ablation (RFA) treatments for supraventricular arrhythmias. This study investigated the capabilities of catheter transducer based acoustic radiation force impulse (ARFI) ultrasound imaging for quantifying ablation lesion dimensions. METHODS AND RESULTS: RFA lesions were created in vitro in porcine ventricular myocardium and imaged with an intracardiac ultrasound catheter transducer capable of acquiring spatially registered B-mode and ARFI images. The myocardium was sliced along the imaging plane and photographed. The maximum ARFI-induced displacement images of the lesion were normalized and spatially registered with the photograph by matching the surfaces of the tissue in the B-mode and photographic images. The lesion dimensions determined by a manual segmentation of the photographed lesion based on the visible discoloration of the tissue were compared to automatic segmentations of the ARFI image using 2 different calculated thresholds. ARFI imaging accurately localized and sized the lesions within the myocardium. Differences in the maximum lateral and axial dimensions were statistically below 2 mm and 1 mm, respectively, for the 2 thresholding methods, with mean percent overlap of 68.7 +/- 5.21% and 66.3 +/- 8.4% for the 2 thresholds used. CONCLUSION: ARFI imaging is capable of visualizing myocardial RFA lesion dimensions to within 2 mm in vitro. Visualizing lesions during transcatheter cardiac ablation procedures could improve the success of the treatment by imaging lesion line discontinuity and potentially reducing the required number of ablation lesions and procedure time.


Assuntos
Ablação por Cateter/efeitos adversos , Diagnóstico por Imagem/métodos , Miocárdio/patologia , Animais , Elasticidade , Processamento de Imagem Assistida por Computador , Suínos
20.
Artigo em Inglês | MEDLINE | ID: mdl-32142428

RESUMO

The lag-one coherence (LOC), derived from the correlation between the nearest-neighbor channel signals, provides a reliable measure of clutter which, under certain assumptions, can be directly related to the signal-to-noise ratio of individual channel signals. This offers a direct means to decompose the beamsum output power into contributions from speckle and spatially incoherent noise originating from acoustic clutter and thermal noise. In this study, we applied a novel method called lag-one spatial coherence adaptive normalization (LoSCAN) to locally estimate and compensate for the contribution of spatially incoherent clutter from conventional delay-and-sum (DAS) images. Suppression of incoherent clutter by LoSCAN resulted in improved image quality without introducing many of the artifacts common to other adaptive imaging methods. In simulations with known targets and added channel noise, LoSCAN was shown to restore native contrast and increase DAS dynamic range by as much as 10-15 dB. These improvements were accompanied by DAS-like speckle texture along with reduced focal dependence and artifact compared with other adaptive methods. Under in vivo liver and fetal imaging conditions, LoSCAN resulted in increased generalized contrast-to-noise ratio (gCNR) in nearly all matched image pairs ( N = 366 ) with average increases of 0.01, 0.03, and 0.05 in good-, fair-, and poor-quality DAS images, respectively, and overall changes in gCNR from -0.01 to 0.20, contrast-to-noise ratio (CNR) from -0.05 to 0.34, contrast from -9.5 to -0.1 dB, and texture µ/σ from -0.37 to -0.001 relative to DAS.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Ultrassonografia/métodos , Algoritmos , Artefatos , Feminino , Feto/diagnóstico por imagem , Humanos , Fígado/diagnóstico por imagem , Imagens de Fantasmas , Gravidez , Processamento de Sinais Assistido por Computador , Ultrassonografia Pré-Natal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA