Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 21(10): 1160-1171, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32747819

RESUMO

Autophagy supports both cellular and organismal homeostasis. However, whether autophagy should be inhibited or activated for cancer therapy remains unclear. Deletion of essential autophagy genes increased the sensitivity of mouse mammary carcinoma cells to radiation therapy in vitro and in vivo (in immunocompetent syngeneic hosts). Autophagy-deficient cells secreted increased amounts of type I interferon (IFN), which could be limited by CGAS or STING knockdown, mitochondrial DNA depletion or mitochondrial outer membrane permeabilization blockage via BCL2 overexpression or BAX deletion. In vivo, irradiated autophagy-incompetent mammary tumors elicited robust immunity, leading to improved control of distant nonirradiated lesions via systemic type I IFN signaling. Finally, a genetic signature of autophagy had negative prognostic value in patients with breast cancer, inversely correlating with mitochondrial abundance, type I IFN signaling and effector immunity. As clinically useful autophagy inhibitors are elusive, our findings suggest that mitochondrial outer membrane permeabilization may represent a valid target for boosting radiation therapy immunogenicity in patients with breast cancer.


Assuntos
Proteína 5 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/genética , Autofagia/genética , Neoplasias da Mama/radioterapia , DNA Mitocondrial/genética , Neoplasias Mamárias Animais/radioterapia , Mitocôndrias/metabolismo , Adulto , Idoso , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/mortalidade , Linhagem Celular Tumoral , Citotoxicidade Imunológica , Feminino , Humanos , Interferon Tipo I/metabolismo , Neoplasias Mamárias Animais/genética , Camundongos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Prognóstico , Tolerância a Radiação , Transdução de Sinais , Análise de Sobrevida
2.
Hum Mol Genet ; 32(13): 2241-2250, 2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37027192

RESUMO

OBJECTIVE: In Friedreich's ataxia (FRDA), the most affected tissues are not accessible to sampling and available transcriptomic findings originate from blood-derived cells and animal models. Herein, we aimed at dissecting for the first time the pathophysiology of FRDA by means of RNA-sequencing in an affected tissue sampled in vivo. METHODS: Skeletal muscle biopsies were collected from seven FRDA patients before and after treatment with recombinant human Erythropoietin (rhuEPO) within a clinical trial. Total RNA extraction, 3'-mRNA library preparation and sequencing were performed according to standard procedures. We tested for differential gene expression with DESeq2 and performed gene set enrichment analysis with respect to control subjects. RESULTS: FRDA transcriptomes showed 1873 genes differentially expressed from controls. Two main signatures emerged: (1) a global downregulation of the mitochondrial transcriptome as well as of ribosome/translational machinery and (2) an upregulation of genes related to transcription and chromatin regulation, especially of repressor terms. Downregulation of the mitochondrial transcriptome was more profound than previously shown in other cellular systems. Furthermore, we observed in FRDA patients a marked upregulation of leptin, the master regulator of energy homeostasis. RhuEPO treatment further enhanced leptin expression. INTERPRETATION: Our findings reflect a double hit in the pathophysiology of FRDA: a transcriptional/translational issue and a profound mitochondrial failure downstream. Leptin upregulation in the skeletal muscle in FRDA may represent a compensatory mechanism of mitochondrial dysfunction, which is amenable to pharmacological boosting. Skeletal muscle transcriptomics is a valuable biomarker to monitor therapeutic interventions in FRDA.


Assuntos
Eritropoetina , Ataxia de Friedreich , Animais , Humanos , Transcriptoma/genética , Leptina/genética , Ataxia de Friedreich/patologia , Eritropoetina/genética , RNA , Músculo Esquelético/metabolismo , Proteínas de Ligação ao Ferro/genética , Proteínas de Ligação ao Ferro/metabolismo
3.
Mol Psychiatry ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684795

RESUMO

Schizophrenia (SCZ) is a neuropsychiatric disorder, caused by a combination of genetic and environmental factors. The etiology behind the disorder remains elusive although it is hypothesized to be associated with the aberrant response to neurotransmitters, such as dopamine and glutamate. Therefore, investigating the link between dysregulated metabolites and distorted neurodevelopment holds promise to offer valuable insights into the underlying mechanism of this complex disorder. In this study, we aimed to explore a presumed correlation between the transcriptome and the metabolome in a SCZ model based on patient-derived induced pluripotent stem cells (iPSCs). For this, iPSCs were differentiated towards cortical neurons and samples were collected longitudinally at various developmental stages, reflecting neuroepithelial-like cells, radial glia, young and mature neurons. The samples were analyzed by both RNA-sequencing and targeted metabolomics and the two modalities were used to construct integrative networks in silico. This multi-omics analysis revealed significant perturbations in the polyamine and gamma-aminobutyric acid (GABA) biosynthetic pathways during rosette maturation in SCZ lines. We particularly observed the downregulation of the glutamate decarboxylase encoding genes GAD1 and GAD2, as well as their protein product GAD65/67 and their biochemical product GABA in SCZ samples. Inhibition of ornithine decarboxylase resulted in further decrease of GABA levels suggesting a compensatory activation of the ornithine/putrescine pathway as an alternative route for GABA production. These findings indicate an imbalance of cortical excitatory/inhibitory dynamics occurring during early neurodevelopmental stages in SCZ. Our study supports the hypothesis of disruption of inhibitory circuits to be causative for SCZ and establishes a novel in silico approach that enables for integrative correlation of metabolic and transcriptomic data of psychiatric disease models.

4.
Immunity ; 44(3): 698-711, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26982367

RESUMO

Microsatellite instability in colorectal cancer predicts favorable outcomes. However, the mechanistic relationship between microsatellite instability, tumor-infiltrating immune cells, Immunoscore, and their impact on patient survival remains to be elucidated. We found significant differences in mutational patterns, chromosomal instability, and gene expression that correlated with patient microsatellite instability status. A prominent immune gene expression was observed in microsatellite-instable (MSI) tumors, as well as in a subgroup of microsatellite-stable (MSS) tumors. MSI tumors had increased frameshift mutations, showed genetic evidence of immunoediting, had higher densities of Th1, effector-memory T cells, in situ proliferating T cells, and inhibitory PD1-PDL1 cells, had high Immunoscores, and were infiltrated with mutation-specific cytotoxic T cells. Multivariate analysis revealed that Immunoscore was superior to microsatellite instability in predicting patients' disease-specific recurrence and survival. These findings indicate that assessment of the immune status via Immunoscore provides a potent indicator of tumor recurrence beyond microsatellite-instability staging that could be an important guide for immunotherapy strategies.


Assuntos
Neoplasias Colorretais/diagnóstico , Imunoensaio/métodos , Patologia Molecular/métodos , Subpopulações de Linfócitos T/imunologia , Células Th1/imunologia , Idoso , Idoso de 80 Anos ou mais , Células Cultivadas , Neoplasias Colorretais/mortalidade , Testes Imunológicos de Citotoxicidade , Análise Mutacional de DNA , Feminino , Mutação da Fase de Leitura/genética , Humanos , Memória Imunológica , Masculino , Instabilidade de Microssatélites , Repetições de Microssatélites , Valor Preditivo dos Testes , Prognóstico , Análise de Sobrevida , Transcriptoma
5.
Nat Rev Genet ; 20(12): 724-746, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31515541

RESUMO

The remarkable success of cancer therapies with immune checkpoint blockers is revolutionizing oncology and has sparked intensive basic and translational research into the mechanisms of cancer-immune cell interactions. In parallel, numerous novel cutting-edge technologies for comprehensive molecular and cellular characterization of cancer immunity have been developed, including single-cell sequencing, mass cytometry and multiplexed spatial cellular phenotyping. In order to process, analyse and visualize multidimensional data sets generated by these technologies, computational methods and software tools are required. Here, we review computational tools for interrogating cancer immunity, discuss advantages and limitations of the various methods and provide guidelines to assist in method selection.


Assuntos
Comunicação Celular , Biologia Computacional , Sequenciamento de Nucleotídeos em Larga Escala , Neoplasias , Análise de Célula Única , Software , Comunicação Celular/genética , Comunicação Celular/imunologia , Humanos , Neoplasias/genética , Neoplasias/imunologia
6.
Gut ; 73(2): 282-297, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37884352

RESUMO

OBJECTIVE: We sought to investigate the role of interleukin (IL)-20 in IBD and experimental colitis. DESIGN: Experimental colitis was induced in mice deficient in components of the IL-20 and signal transducer and activator of transcription (STAT)2 signalling pathways. In vivo imaging, high-resolution mini-endoscopy and histology were used to assess intestinal inflammation. We further used RNA-sequencing (RNA-Seq), RNAScope and Gene Ontology analysis, western blot analysis and co-immunoprecipitation, confocal microscopy and intestinal epithelial cell (IEC)-derived three-dimensional organoids to investigate the underlying molecular mechanisms. Results were validated using samples from patients with IBD and non-IBD control subjects by a combination of RNA-Seq, organoids and immunostainings. RESULTS: In IBD, IL20 levels were induced during remission and were significantly higher in antitumour necrosis factor responders versus non-responders. IL-20RA and IL-20RB were present on IECs from patients with IBD and IL-20-induced STAT3 and suppressed interferon (IFN)-STAT2 signalling in these cells. In IBD, experimental dextran sulfate sodium (DSS)-induced colitis and mucosal healing, IECs were the main producers of IL-20. Compared with wildtype controls, Il20-/-, Il20ra-/- and Il20rb-/- mice were more susceptible to experimental DSS-induced colitis. IL-20 deficiency was associated with increased IFN/STAT2 activity in mice and IFN/STAT2-induced necroptotic cell death in IEC-derived organoids could be markedly blocked by IL-20. Moreover, newly generated Stat2ΔIEC mice, lacking STAT2 in IECs, were less susceptible to experimental colitis compared with wildtype controls and the administration of IL-20 suppressed colitis activity in wildtype animals. CONCLUSION: IL-20 controls colitis and mucosal healing by interfering with the IFN/STAT2 death signalling pathway in IECs. These results indicate new directions for suppressing gut inflammation by modulating IL-20-controlled STAT2 signals.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Humanos , Animais , Camundongos , Mucosa Intestinal/metabolismo , Colite/metabolismo , Interleucinas/metabolismo , Inflamação/metabolismo , Células Epiteliais/metabolismo , Doenças Inflamatórias Intestinais/genética , Sulfato de Dextrana/farmacologia , Camundongos Endogâmicos C57BL , Fator de Transcrição STAT2/metabolismo
7.
Gut ; 72(1): 168-179, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35365572

RESUMO

OBJECTIVE: Alcoholic hepatitis (AH) reflects acute exacerbation of alcoholic liver disease (ALD) and is a growing healthcare burden worldwide. Interleukin-11 (IL-11) is a profibrotic, proinflammatory cytokine with increasingly recognised toxicities in parenchymal and epithelial cells. We explored IL-11 serum levels and their prognostic value in patients suffering from AH and cirrhosis of various aetiology and experimental ALD. DESIGN: IL-11 serum concentration and tissue expression was determined in a cohort comprising 50 patients with AH, 110 patients with cirrhosis and 19 healthy volunteers. Findings were replicated in an independent patient cohort (n=186). Primary human hepatocytes exposed to ethanol were studied in vitro. Ethanol-fed wildtype mice were treated with a neutralising murine IL-11 receptor-antibody (anti-IL11RA) and examined for severity signs and markers of ALD. RESULTS: IL-11 serum concentration and hepatic expression increased with severity of liver disease, mostly pronounced in AH. In a multivariate Cox-regression, a serum level above 6.4 pg/mL was a model of end-stage liver disease independent risk factor for transplant-free survival in patients with compensated and decompensated cirrhosis. In mice, severity of alcohol-induced liver inflammation correlated with enhanced hepatic IL-11 and IL11RA expression. In vitro and in vivo, anti-IL11RA reduced pathogenic signalling pathways (extracellular signal-regulated kinases, c-Jun N-terminal kinase, NADPH oxidase 4) and protected hepatocytes and murine livers from ethanol-induced inflammation and injury. CONCLUSION: Pathogenic IL-11 signalling in hepatocytes plays a crucial role in the pathogenesis of ALD and could serve as an independent prognostic factor for transplant-free survival. Blocking IL-11 signalling might be a therapeutic option in human ALD, particularly AH.


Assuntos
Hepatite Alcoólica , Hepatopatias Alcoólicas , Humanos , Camundongos , Animais , Interleucina-11/metabolismo , Hepatopatias Alcoólicas/metabolismo , Fígado/metabolismo , Hepatite Alcoólica/metabolismo , Etanol/toxicidade , Etanol/metabolismo , Hepatócitos/metabolismo , Inflamação/metabolismo , Cirrose Hepática/patologia , Camundongos Endogâmicos C57BL
8.
Gastroenterology ; 162(1): 223-237.e11, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34599932

RESUMO

BACKGROUND & AIMS: Throughout life, the intestinal epithelium undergoes constant self-renewal from intestinal stem cells. Together with genotoxic stressors and failing DNA repair, this self-renewal causes susceptibility toward malignant transformation. X-box binding protein 1 (XBP1) is a stress sensor involved in the unfolded protein response (UPR). We hypothesized that XBP1 acts as a signaling hub to regulate epithelial DNA damage responses. METHODS: Data from The Cancer Genome Atlas were analyzed for association of XBP1 with colorectal cancer (CRC) survival and molecular interactions between XBP1 and p53 pathway activity. The role of XBP1 in orchestrating p53-driven DNA damage response was tested in vitro in mouse models of chronic intestinal epithelial cell (IEC) DNA damage (Xbp1/H2bfl/fl, Xbp1ΔIEC, H2bΔIEC, H2b/Xbp1ΔIEC) and via orthotopic tumor organoid transplantation. Transcriptome analysis of intestinal organoids was performed to identify molecular targets of Xbp1-mediated DNA damage response. RESULTS: In The Cancer Genome Atlas data set of CRC, low XBP1 expression was significantly associated with poor overall survival and reduced p53 pathway activity. In vivo, H2b/Xbp1ΔIEC mice developed spontaneous intestinal carcinomas. Orthotopic tumor organoid transplantation revealed a metastatic potential of H2b/Xbp1ΔIEC-derived tumors. RNA sequencing of intestinal organoids (H2b/Xbp1fl/fl, H2bΔIEC, H2b/Xbp1ΔIEC, and H2b/p53ΔIEC) identified a transcriptional program downstream of p53, in which XBP1 directs DNA-damage-inducible transcript 4-like (Ddit4l) expression. DDIT4L inhibits mechanistic target of rapamycin-mediated phosphorylation of 4E-binding protein 1. Pharmacologic mechanistic target of rapamycin inhibition suppressed epithelial hyperproliferation via 4E-binding protein 1. CONCLUSIONS: Our data suggest a crucial role for XBP1 in coordinating epithelial DNA damage responses and stem cell function via a p53-DDIT4L-dependent feedback mechanism.


Assuntos
Adenocarcinoma/metabolismo , Adenoma/metabolismo , Transformação Celular Neoplásica/metabolismo , Dano ao DNA , Células Epiteliais/metabolismo , Mucosa Intestinal/metabolismo , Neoplasias Intestinais/metabolismo , Proteína 1 de Ligação a X-Box/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/genética , Adenocarcinoma/patologia , Adenoma/tratamento farmacológico , Adenoma/genética , Adenoma/patologia , Animais , Proteínas de Ciclo Celular/metabolismo , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Bases de Dados Genéticas , Estresse do Retículo Endoplasmático , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Neoplasias Intestinais/tratamento farmacológico , Neoplasias Intestinais/genética , Neoplasias Intestinais/patologia , Inibidores de MTOR/farmacologia , Camundongos Knockout , Transdução de Sinais , Sirolimo/farmacologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína 1 de Ligação a X-Box/genética
9.
Bioinformatics ; 38(4): 1131-1132, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-34788790

RESUMO

SUMMARY: Somatic mutations and gene fusions can produce immunogenic neoantigens mediating anticancer immune responses. However, their computational prediction from sequencing data requires complex computational workflows to identify tumor-specific aberrations, derive the resulting peptides, infer patients' Human Leukocyte Antigen types and predict neoepitopes binding to them, together with a set of features underlying their immunogenicity. Here, we present nextNEOpi (nextflow NEOantigen prediction pipeline) a comprehensive and fully automated bioinformatic pipeline to predict tumor neoantigens from raw DNA and RNA sequencing data. In addition, nextNEOpi quantifies neoepitope- and patient-specific features associated with tumor immunogenicity and response to immunotherapy. AVAILABILITY AND IMPLEMENTATION: nextNEOpi source code and documentation are available at https://github.com/icbi-lab/nextNEOpi. CONTACT: dietmar.rieder@i-med.ac.at or francesca.finotello@uibk.ac.at. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Neoplasias , Humanos , Neoplasias/genética , Antígenos de Neoplasias/genética , Peptídeos/genética , Análise de Sequência de RNA
10.
Exp Cell Res ; 414(1): 113084, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35219646

RESUMO

Epithelial to mesenchymal transition (EMT) describes a process where epithelial tumor cells acquire mesenchymal characteristics. EMT often correlates with invasion and an increased cell migration potential by losing cellular polarity and cell-cell junctions. It is mainly induced by tumor-microenvironment factors, such as TGF-beta 1 and IL-6, which activate the increased expression of the EMT-transcription factor (TF) Slug. We previously reported the Slug/Krüppel-like factor 4 (KLF4) switch in EMT in HNSCC, and found, that in human papilloma virus (HPV)-negative HNSCC Slug gene expression was significant higher represented, than in HPV-positive HNSCC. The purpose of this study was to investigate the impact of KLF4 and Slug on the regulation of the cadherin switch and on the EMT phenotype. Gene expression of KLF4 positive correlated with E-cadherin in 71 head and neck squamous cell carcinoma (HNSCC) patient tissue samples, which we also confirmed by the investigation of the Cancer Genome Atlas database (TCGA). HPV-transcripts contributed to stabilization of KLF4 at protein level, and simultaneously upregulated E-cadherin. Furthermore, ectopic KLF4 overexpression was associated with epithelial gene expression by induction of E-cadherin, ß-catenin and 70-kDa heat shock protein (HSP-70). The presence of HSP-70 ensures the membranous localization of E-cadherin, therefore, the ability of cells to form cadherin/catenin complexes and cellular linkages. In conclusion, KLF4 is a major regulator of the epithelial cadherin-adhesion in HNSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Infecções por Papillomavirus , Caderinas/metabolismo , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/genética , Humanos , Infecções por Papillomavirus/genética , Fatores de Transcrição da Família Snail/genética , Fatores de Transcrição da Família Snail/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Microambiente Tumoral
11.
Int J Mol Sci ; 24(8)2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37108564

RESUMO

The paracaspase MALT1 is a crucial regulator of immune responses in various cellular contexts. Recently, there is increasing evidence suggesting that MALT1 might represent a novel key player in mucosal inflammation. However, the molecular mechanisms underlying this process and the targeted cell population remain unclear. In this study, we investigate the role of MALT1 proteolytic activity in the context of mucosal inflammation. We demonstrate a significant enrichment of MALT1 gene and protein expression in colonic epithelial cells of UC patients, as well as in the context of experimental colitis. Mechanistically we demonstrate that MALT1 protease function inhibits ferroptosis, a form of iron-dependent cell death, upstream of NF-κB signaling, which can promote inflammation and tissue damage in IBD. We further show that MALT1 activity contributes to STAT3 signaling, which is essential for the regeneration of the intestinal epithelium after injury. In summary, our data strongly suggests that the protease function of MALT1 plays a critical role in the regulation of immune and inflammatory responses, as well as mucosal healing. Understanding the mechanisms by which MALT1 protease function regulates these processes may offer novel therapeutic targets for the treatment of IBD and other inflammatory diseases.


Assuntos
Doenças Inflamatórias Intestinais , Transdução de Sinais , Humanos , Inflamação , Doenças Inflamatórias Intestinais/genética , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/genética , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/metabolismo , NF-kappa B/metabolismo , Proteólise , Células Epiteliais
12.
Mol Cancer ; 21(1): 132, 2022 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-35717322

RESUMO

BACKGROUND: Crosstalk between neoplastic and stromal cells fosters prostate cancer (PCa) progression and dissemination. Insight in cell-to-cell communication networks provides new therapeutic avenues to mold processes that contribute to PCa tumor microenvironment (TME) alterations. Here we performed a detailed characterization of PCa tumor endothelial cells (TEC) to delineate intercellular crosstalk between TEC and the PCa TME. METHODS: TEC isolated from 67 fresh radical prostatectomy (RP) specimens underwent multi-omic ex vivo characterization as well as orthogonal validation of both TEC functions and key markers by immunohistochemistry (IHC) and immunofluorescence (IF). To identify cell-cell interaction targets in TEC, we performed single-cell RNA sequencing (scRNA-seq) in four PCa patients who underwent a RP to catalogue cellular TME composition. Targets were cross-validated using IHC, publicly available datasets, cell culture expriments as well as a PCa xenograft mouse model. RESULTS: Compared to adjacent normal endothelial cells (NEC) bulk RNA-seq analysis revealed upregulation of genes associated with tumor vasculature, collagen modification and extracellular matrix remodeling in TEC. PTGIR, PLAC9, CXCL12 and VDR were identified as TEC markers and confirmed by IF and IHC in an independent patient cohort. By scRNA-seq we identified 27 cell (sub)types, including endothelial cells (EC) with arterial, venous and immature signatures, as well as angiogenic tip EC. A focused molecular analysis revealed that arterial TEC displayed highest CXCL12 mRNA expression levels when compared to all other TME cell (sub)populations and showed a negative prognostic role. Receptor-ligand interaction analysis predicted interactions between arterial TEC derived CXCL12 and its cognate receptor CXCR4 on angiogenic tip EC. CXCL12 was in vitro and in vivo validated as actionable TEC target by highlighting the vessel number- and density- reducing activity of the CXCR4-inhibitor AMD3100 in murine PCa as well as by inhibition of TEC proliferation and migration in vitro. CONCLUSIONS: Overall, our comprehensive analysis identified novel PCa TEC targets and highlights CXCR4/CXCL12 interaction as a potential novel target to interfere with tumor angiogenesis in PCa.


Assuntos
Próstata , Neoplasias da Próstata , Animais , Linhagem Celular Tumoral , Proliferação de Células , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Células Endoteliais/metabolismo , Humanos , Masculino , Camundongos , Próstata/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Receptores de Epoprostenol , Microambiente Tumoral
13.
Int J Cancer ; 150(4): 688-704, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34716584

RESUMO

The surface inhibitory receptor NKG2A forms heterodimers with the invariant CD94 chain and is expressed on a subset of activated CD8 T cells. As antibodies to block NKG2A are currently tested in several efficacy trials for different tumor indications, it is important to characterize the NKG2A+ CD8 T cell population in the context of other inhibitory receptors. Here we used a well-controlled culture system to study the kinetics of inhibitory receptor expression. Naïve mouse CD8 T cells were synchronously and repeatedly activated by artificial antigen presenting cells in the presence of the homeostatic cytokine IL-7. The results revealed NKG2A as a late inhibitory receptor, expressed after repeated cognate antigen stimulations. In contrast, the expression of PD-1, TIGIT and LAG-3 was rapidly induced, hours after first contact and subsequently down regulated during each resting phase. This late, but stable expression kinetics of NKG2A was most similar to that of TIM-3 and CD39. Importantly, single-cell transcriptomics of human tumor-infiltrating lymphocytes (TILs) showed indeed that these receptors were often coexpressed by the same CD8 T cell cluster. Furthermore, NKG2A expression was associated with cell division and was promoted by TGF-ß in vitro, although TGF-ß signaling was not necessary in a mouse tumor model in vivo. In summary, our data show that PD-1 reflects recent TCR triggering, but that NKG2A is induced after repeated antigen stimulations and represents a late inhibitory receptor. Together with TIM-3 and CD39, NKG2A might thus mark actively dividing tumor-specific TILs.


Assuntos
Proteínas de Checkpoint Imunológico/fisiologia , Subfamília C de Receptores Semelhantes a Lectina de Células NK/fisiologia , Animais , Antígenos CD/fisiologia , Linfócitos T CD8-Positivos/imunologia , Divisão Celular , Receptor Celular 2 do Vírus da Hepatite A/fisiologia , Humanos , Linfócitos do Interstício Tumoral/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Antígenos de Linfócitos T/fisiologia , Receptores Imunológicos/fisiologia , Fator de Crescimento Transformador beta/farmacologia , Microambiente Tumoral , Proteína do Gene 3 de Ativação de Linfócitos
14.
Am J Pathol ; 191(6): 1094-1107, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33705753

RESUMO

Patients with advanced prostate cancer are frequently treated with the antiandrogen enzalutamide. However, resistance eventually develops in virtually all patients, and various mechanisms have been associated with this process. The histone acetyltransferases EP300 and CREBBP are involved in regulation of cellular events in advanced prostate cancer. This study investigated the role of EP300/CREBBP inhibitors in enzalutamide-resistant prostate cancer. EP300/CREBBP inhibitors led to the same inhibition of androgen receptor activity in enzalutamide-resistant and -sensitive cells. However, enzalutamide-resistant cells were more sensitive to these inhibitors in viability assays. As indicated by the RNA-sequencing-based pathway analysis, genes related to the ribosome and MYC activity were significantly altered upon EP300/CREBBP inhibitor treatment. EP300/CREBBP inhibitors led to the down-regulation of ribosomal proteins RPL36 and RPL29. High-level ribosomal proteins amplifications and MYC amplifications were observed in castration-resistant prostate cancer samples of the publicly available Stand Up to Cancer data set. An inhibitor of RNA polymerase I-mediated transcription was used to evaluate the functional implications of these findings. The enzalutamide-resistant cell lines were more sensitive to this treatment. In addition, the migration rate of enzalutamide-resistant cells was strongly inhibited by this treatment. Taken together, the current data show that EP300/CREBBP inhibitors affect the MYC/ribosomal protein axis in enzalutamide-resistant cells and may have promising therapeutic implications.


Assuntos
Proteína de Ligação a CREB/metabolismo , Resistencia a Medicamentos Antineoplásicos/fisiologia , Proteína p300 Associada a E1A/metabolismo , Neoplasias de Próstata Resistentes à Castração/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Ribossômicas/metabolismo , Antagonistas de Androgênios , Benzamidas , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Masculino , Nitrilas , Feniltioidantoína
15.
Immunity ; 39(4): 782-95, 2013 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-24138885

RESUMO

The complex interactions between tumors and their microenvironment remain to be elucidated. Combining large-scale approaches, we examined the spatio-temporal dynamics of 28 different immune cell types (immunome) infiltrating tumors. We found that the immune infiltrate composition changed at each tumor stage and that particular cells had a major impact on survival. Densities of T follicular helper (Tfh) cells and innate cells increased, whereas most T cell densities decreased along with tumor progression. The number of B cells, which are key players in the core immune network and are associated with prolonged survival, increased at a late stage and showed a dual effect on recurrence and tumor progression. The immune control relevance was demonstrated in three endoscopic orthotopic colon-cancer mouse models. Genomic instability of the chemokine CXCL13 was a mechanism associated with Tfh and B cell infiltration. CXCL13 and IL21 were pivotal factors for the Tfh/B cell axis correlating with survival. This integrative study reveals the immune landscape in human colorectal cancer and the major hallmarks of the microenvironment associated with tumor progression and recurrence.


Assuntos
Linfócitos B/imunologia , Carcinoma/imunologia , Quimiocina CXCL13/imunologia , Neoplasias Colorretais/imunologia , Interleucinas/imunologia , Recidiva Local de Neoplasia/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Linfócitos B/patologia , Carcinoma/genética , Carcinoma/mortalidade , Carcinoma/patologia , Movimento Celular , Quimiocina CXCL13/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/patologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Imunidade Inata , Interleucinas/genética , Contagem de Linfócitos , Camundongos , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/mortalidade , Recidiva Local de Neoplasia/patologia , Estadiamento de Neoplasias , Estabilidade Proteica , Análise de Sobrevida , Linfócitos T Auxiliares-Indutores/patologia , Microambiente Tumoral/imunologia
16.
Nat Rev Genet ; 17(8): 441-58, 2016 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-27376489

RESUMO

Recent breakthroughs in cancer immunotherapy and decreasing costs of high-throughput technologies have sparked intensive research into tumour-immune cell interactions using genomic tools. The wealth of the generated data and the added complexity pose considerable challenges and require computational tools to process, to analyse and to visualize the data. Recently, various tools have been developed and used to mine tumour immunologic and genomic data effectively and to provide novel mechanistic insights. Here, we review computational genomics tools for cancer immunology and provide information on the requirements and functionality in order to assist in the selection of tools and assembly of analytical pipelines.


Assuntos
Comunicação Celular/imunologia , Quimiocinas/imunologia , Biologia Computacional/métodos , Genômica/métodos , Neoplasias/imunologia , Neoplasias/metabolismo , Animais , Humanos , Neoplasias/genética
17.
Eur Respir J ; 57(4)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33303539

RESUMO

BACKGROUND: After the 2002/2003 severe acute respiratory syndrome outbreak, 30% of survivors exhibited persisting structural pulmonary abnormalities. The long-term pulmonary sequelae of coronavirus disease 2019 (COVID-19) are yet unknown, and comprehensive clinical follow-up data are lacking. METHODS: In this prospective, multicentre, observational study, we systematically evaluated the cardiopulmonary damage in subjects recovering from COVID-19 at 60 and 100 days after confirmed diagnosis. We conducted a detailed questionnaire, clinical examination, laboratory testing, lung function analysis, echocardiography and thoracic low-dose computed tomography (CT). RESULTS: Data from 145 COVID-19 patients were evaluated, and 41% of all subjects exhibited persistent symptoms 100 days after COVID-19 onset, with dyspnoea being most frequent (36%). Accordingly, patients still displayed an impaired lung function, with a reduced diffusing capacity in 21% of the cohort being the most prominent finding. Cardiac impairment, including a reduced left ventricular function or signs of pulmonary hypertension, was only present in a minority of subjects. CT scans unveiled persisting lung pathologies in 63% of patients, mainly consisting of bilateral ground-glass opacities and/or reticulation in the lower lung lobes, without radiological signs of pulmonary fibrosis. Sequential follow-up evaluations at 60 and 100 days after COVID-19 onset demonstrated a vast improvement of symptoms and CT abnormalities over time. CONCLUSION: A relevant percentage of post-COVID-19 patients presented with persisting symptoms and lung function impairment along with radiological pulmonary abnormalities >100 days after the diagnosis of COVID-19. However, our results indicate a significant improvement in symptoms and cardiopulmonary status over time.


Assuntos
COVID-19 , Fibrose Pulmonar , Humanos , Pulmão/diagnóstico por imagem , Estudos Prospectivos , SARS-CoV-2
18.
Bioinformatics ; 36(7): 2260-2261, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31755900

RESUMO

SUMMARY: Gene fusions can generate immunogenic neoantigens that mediate anticancer immune responses. However, their computational prediction from RNA sequencing (RNA-seq) data requires deep bioinformatics expertise to assembly a computational workflow covering the prediction of: fusion transcripts, their translated proteins and peptides, Human Leukocyte Antigen (HLA) types, and peptide-HLA binding affinity. Here, we present NeoFuse, a computational pipeline for the prediction of fusion neoantigens from tumor RNA-seq data. NeoFuse can be applied to cancer patients' RNA-seq data to identify fusion neoantigens that might expand the repertoire of suitable targets for immunotherapy. AVAILABILITY AND IMPLEMENTATION: NeoFuse source code and documentation are available under GPLv3 license at https://icbi.i-med.ac.at/NeoFuse/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Antígenos de Neoplasias , RNA , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Análise de Sequência de RNA , Software , Sequenciamento do Exoma
19.
Bioinformatics ; 36(18): 4817-4818, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32614448

RESUMO

SUMMARY: Advances in single-cell technologies have enabled the investigation of T-cell phenotypes and repertoires at unprecedented resolution and scale. Bioinformatic methods for the efficient analysis of these large-scale datasets are instrumental for advancing our understanding of adaptive immune responses. However, while well-established solutions are accessible for the processing of single-cell transcriptomes, no streamlined pipelines are available for the comprehensive characterization of T-cell receptors. Here, we propose single-cell immune repertoires in Python (Scirpy), a scalable Python toolkit that provides simplified access to the analysis and visualization of immune repertoires from single cells and seamless integration with transcriptomic data. AVAILABILITY AND IMPLEMENTATION: Scirpy source code and documentation are available at https://github.com/icbi-lab/scirpy. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Biologia Computacional , Software , Documentação , Receptores de Antígenos de Linfócitos T
20.
Trends Immunol ; 39(11): 921-936, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30309702

RESUMO

Adoptive transfer of TCR-engineered T cells is a potent therapy, able to induce clinical responses in different human malignancies. Nevertheless, treatment toxicities may occur and, in particular for solid tumors, responses may be variable and often not durable. To address these challenges, it is imperative to carefully select target antigens and to immunologically interrogate the corresponding tumors when designing optimal T cell therapies. Here, we review recent advances, covering both omics- and laboratory tools that can enable the selection of optimal T cell epitopes and TCRs as well as the identification of dominant immune evasive mechanisms within tumor tissues. Furthermore, we discuss how these techniques may aid in a rational design of effective combinatorial adoptive T cell therapies.


Assuntos
Imunoterapia Adotiva/métodos , Neoplasias/terapia , Retroviridae/fisiologia , Linfócitos T/imunologia , Viroses/imunologia , Animais , Antígenos de Neoplasias/imunologia , Epitopos de Linfócito T/metabolismo , Antígenos HLA/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Neoplasias/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA