Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Chim Acta ; 1297: 342371, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38438240

RESUMO

BACKGROUND: Bacterial infections, especially polymicrobial infections, remain a threat to global health and require advances in diagnostic technologies for timely and accurate identification of all causative species. Digital melt - microfluidic chip-based digital PCR combined with high resolution melt (HRM) - is an emerging method for identification and quantification of polymicrobial bacterial infections. Despite advances in recent years, existing digital melt instrumentation often delivers nonuniform temperatures across digital chips, resulting in nonuniform digital melt curves for individual bacterial species. This nonuniformity can lead to inaccurate species identification and reduce the capacity for differentiating bacterial species with similar digital melt curves. RESULTS: We introduce herein a new temperature calibration method for digital melt by incorporating an unamplified, synthetic DNA fragment with a known melting temperature as a calibrator. When added at a tuned concentration to an established digital melt assay amplifying the commonly targeted 16S V1 - V6 region, this calibrator produced visible low temperature calibrator melt curves across-chip along with the target bacterial melt curves. This enables alignment of the bacterial melt curves and correction of heating-induced nonuniformities. Using this calibration method, we were able to improve the uniformity of digital melt curves from three causative species of bacteria. Additionally, we assessed calibration's effects on identification accuracy by performing machine learning identification of three polymicrobial mixtures comprised of two bacteria with similar digital melt curves in different ratios. Calibration greatly improved mixture composition prediction. SIGNIFICANCE: To the best of our knowledge, this work represents the first DNA calibrator-supplemented assay and calibration method for nanoarray digital melt. Our results suggest that this calibration method can be flexibly used to improve identification accuracy and reduce melt curve variabilities across a variety of pathogens and assays. Therefore, this calibration method has the potential to elevate the diagnostic capabilities of digital melt toward polymicrobial bacterial infections and other infectious diseases.


Assuntos
Infecções Bacterianas , Oligonucleotídeos , Humanos , Calibragem , Temperatura , DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA