Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chemphyschem ; 20(22): 3128-3133, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31309660

RESUMO

Herein, a method is presented that allows quantitative determination of faradaic efficiencies for dinitrogen (N2 ) generation during the electrochemical oxidation of hydroxylamine (NH2 OH), fN2NH2OH , on a polycrystalline gold Au(poly) disk electrode in aqueous electrolytes over a wide pH range. This tactic involves the use of an impinging jet electrolyte configuration incorporating a gas porous ring connected in turn to a mass spectrometer. The actual amount of N2 generated at the Au(poly) disk was assayed using the oxidation of hydrazine (N2 H4 ) in aqueous phosphate buffer (pH 7). This redox process yields N2 as the only product, allowing a direct correlation to be established between the changes in the partial pressures of N2 and the current flowing through the disk electrode. An analysis of the data collected revealed a strong dependence of fN2NH2OH both on pH and the applied potential. Although values of fN2NH2OH as high as 20 to 30 % were found in acid and neutral media over a narrow potential region, those in alkaline solution were far smaller in the entire potential range examined.

2.
ACS Appl Mater Interfaces ; 16(1): 795-806, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38149962

RESUMO

High temperature, high energy density, and low loss dielectric films are promising candidates for miniaturized capacitors in electric vehicles and high-speed trains. However, single-component polymers could not achieve these desired properties simultaneously. Polymer multilayer films (MLFs), which combine a high dielectric constant polymer [e.g., poly(vinylidene fluoride) (PVDF)] and a high breakdown/low loss polymer [e.g., polycarbonate (PC)] in a unique layered structure, have the potential achieve them at the same time. In this work, the effects of PC glass transition temperature (Tg) on the dielectric insulation properties (breakdown strength and lifetime) were investigated at high temperatures of 100-150 °C. Three PC materials had Tg values of 145 (PC1), 165 (PC2), and 185 °C (PC3), respectively. It is observed that MLF-PC3 with the highest Tg of PC exhibited the highest Weibull direct/alternating current (DC/AC) breakdown strength and the longest DC/AC lifetime, whereas MLF-PC1 with the lowest Tg showed the lowest Weibull DC/AC breakdown strength and the shortest DC/AC lifetime. A high-temperature high-volage leakage current study revealed that MLF-PC3 exhibited the lowest bulk conductivity at all temperatures under different electric fields. The knowledge obtained from this study will help us design better MLFs with high performance for next-generation miniaturized capacitors.

3.
Anal Chem ; 84(12): 5175-9, 2012 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-22650363

RESUMO

A porous Teflon ring|solid disk electrode is herein described specifically designed for acquiring online mass spectrometric measurements under well-defined forced convection created by liquid emerging from a circular nozzle impinging on the disk under wall-jet conditions. Measurements were performed for the oxidation of hydrazine, N(2)H(4), in a deaerated phosphate buffer electrolyte (pH 7) on Au, a process known to yield dinitrogen as the product. The N(2)(+) ion currents, measured by the mass spectrometer, i(N(2)(+)), as well as the corresponding polarization curves recorded simultaneously displayed very similar s-like shapes when plotted as a function of the potential applied to the Au disk. In fact, the limiting currents observed both electrochemically and spectrometrically were found to be proportional to [N(2)H(4)]. However, the limiting values of i(N(2)(+)) did not increase monotonically with the flow rate, ν(f), reaching instead a maximum and then decreasing to values independent of ν(f). This behavior has been attributed in part to hindrances in the mass transport of gases through the porous materials.

4.
ACS Appl Mater Interfaces ; 7(9): 5248-57, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25693003

RESUMO

In this report, a dipolar glass polymer, poly(2-(methylsulfonyl)ethyl methacrylate) (PMSEMA), was synthesized by free radical polymerization of the corresponding methacrylate monomer. Due to the large dipole moment (4.25 D) and small size of the side-chain sulfone groups, PMSEMA exhibited a strong γ transition at a temperature as low as -110 °C at 1 Hz, about 220 °C below its glass transition temperature around 109 °C. Because of this strong γ dipole relaxation, the glassy PMSEMA sample exhibited a high dielectric constant of 11.4 and a low dissipation factor (tan δ) of 0.02 at 25 °C and 1 Hz. From an electric displacement-electric field (D-E) loop study, PMSEMA demonstrated a high discharge energy density of 4.54 J/cm(3) at 283 MV/m, nearly 3 times that of an analogue polymer, poly(methyl methacrylate) (PMMA). However, the hysteresis loss was only 1/3-1/2 of that for PMMA. This study suggests that dipolar glass polymers with large dipole moments and small-sized dipolar side groups are promising candidates for high energy density and low loss dielectric applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA