RESUMO
PURPOSE: To determined sex differences in absolute- and %-reductions in blood flow during intermittent muscular contractions as well as relationships between blood flow reductions and time to task failure (TTF). METHODS: Thirteen males (25 ± 4 years) and 13 females (22 ± 5 years) completed intermittent isometric trapezoidal forearm flexion at 50% maximal voluntary contraction until task failure. Doppler ultrasound was used to measure brachial artery blood flow (BABF) during the 12-s plateau phase and 12-s relaxation phase. RESULTS: Target torque was less in females than males (24 ± 5 vs. 42 ± 7 Nm; p < 0.001); however, TTF was not different between sexes (F: 425 ± 187 vs. M: 401 ± 158 s; p = 0.72). Relaxation-phase BABF at end-exercise was less in females than males (435 ± 161 vs. 937 ± 281 mL/min; p < 0.001) but contraction-phase BABF was not different (127 ± 46 vs. 190 ± 99 mL/min; p = 0.42). Absolute- and %-reductions in BABF by contraction were less in females than males (309 ± 146 vs. 747 ± 210 mL/min and 69 ± 10 vs. 80% ± 6%, respectively; both p < 0.01) and were associated with target torque independent of sex (r = 0.78 and 0.56, respectively; both p < 0.01). Absolute BABF reduction per target torque (mL/min/Nm) and TTF were positively associated in males (r = 0.60; p = 0.031) but negatively associated in females (r = - 0.61; p = 0.029). CONCLUSIONS: This study provides evidence that females incur less proportional reduction in limb blood flow from muscular contraction than males at a matched relative intensity suggesting females may maintain higher levels of muscle oxygen delivery and metabolite removal than males across the contraction-relaxation cycle of intermittent exercise.
Assuntos
Fadiga Muscular , Músculo Esquelético , Humanos , Masculino , Feminino , Músculo Esquelético/fisiologia , Fadiga Muscular/fisiologia , Caracteres Sexuais , Contração Isométrica/fisiologia , Contração Muscular/fisiologia , Extremidade Superior , TorqueRESUMO
PURPOSE: To investigate the effects of blood flow restriction (BFR) on electromyographic amplitude (EMGRMS)-force relationships of the biceps brachii (BB) during a single high-load muscle action. METHODS: Twelve recreationally active males and eleven recreationally active females performed maximal voluntary contractions (MVCs), followed by an isometric trapezoidal muscle action of the elbow flexors at 70% MVC. Surface EMG was recorded from the BB during BFR and control (CON) visits. For BFR, cuff pressure was 60% of the pressure required to completely occlude blood at rest. Individual b (slope) and a terms (gain) were calculated from the log-transformed EMGRMS-force relationships during the linearly increasing and decreasing segments of the trapezoid. EMGRMS during the steady force segment was normalized to MVC EMGRMS. RESULTS: For BFR, the b terms were greater during the linearly increasing segment than the linearly decreasing segment (p < 0.001), and compared to the linearly increasing segment for CON (p < 0.001). The a terms for BFR were greater during the linearly decreasing than linearly increasing segment (p = 0.028). Steady force N-EMGRMS was greater for BFR than CON collapsed across sex (p = 0.041). CONCLUSION: BFR likely elicited additional recruitment of higher threshold motor units during the linearly increasing- and steady force-segment. The differences between activation and deactivation strategies were only observed with BFR, such as the b terms decreased and the a terms increased for the linearly decreasing segment in comparison to the increasing segment. However, EMGRMS-force relationships during the linearly increasing- and decreasing-segments were not different between sexes during BFR and CON.
Assuntos
Cotovelo , Contração Isométrica , Músculo Esquelético , Humanos , Masculino , Feminino , Músculo Esquelético/fisiologia , Músculo Esquelético/irrigação sanguínea , Cotovelo/fisiologia , Adulto , Contração Isométrica/fisiologia , Fluxo Sanguíneo Regional/fisiologia , Eletromiografia/métodos , Adulto Jovem , Contração Muscular/fisiologiaRESUMO
This study examined the effects of blood flow restriction (BFR) on motor unit (MU) behaviour of the biceps brachii (BB) during a single non-exhausting submaximal muscle action. Twenty adults performed maximal voluntary contractions (MVCs) of the elbow flexors, followed by an isometric trapezoidal muscle action at 40% MVC during BFR and control (CON) visits. Surface electromyographic signals recorded from the BB during the 40% MVCs were decomposed. Recruitment thresholds (RTs), MU action potential amplitudes (MUAPAMPS), initial firing rates (IFRs), mean firing rates (MFRs) at steady force, and normalized EMG amplitude (N-EMGRMS) were analysed. Y-intercepts and slopes were calculated for the MUAPAMP, IFR, and MFR vs. RT relationships. Y-intercepts for the IFR and MFR vs. RT relationships and N-EMGRMS increased during BFR (p < 0.05) collapsed across sex. The slopes for the IFR and MFR vs. RT relationships decreased during BFR (p < 0.05) collapsed across sex. The y-intercepts and slopes for the MUAPAMP vs. RT relationships were not different (p > 0.05) between treatments or sex. BFR during the 40% MVC increased IFRs, MFRs, and N-EMGRMS. However, the similar MUAPAMPS observed between treatments may suggest that a greater load is necessary to recruit additional MUs when performing a single submaximal short-duration muscle action with BFR.
RESUMO
ABSTRACT: Montgomery, TR Jr, Olmos, A, Sears, KN, Succi, PJ, Hammer, SM, Bergstrom, HC, Hill, EC, Trevino, MA, and Dinyer-McNeely, TK. Influence of blood flow restriction on neuromuscular function and fatigue during forearm flexion in men. J Strength Cond Res 38(7): e349-e358, 2024-To determine the effects of blood flow restriction (BFR) on the mean firing rate (MFR) and motor unit action potential amplitude (MUAPAMP) vs. recruitment threshold (RT) relationships during fatiguing isometric elbow flexions. Ten men (24.5 ± 4.0 years) performed isometric trapezoidal contractions at 50% maximum voluntary contraction to task failure with or without BFR, on 2 separate days. For BFR, a cuff was inflated to 60% of the pressure required for full brachial artery occlusion at rest. During both visits, surface electromyography was recorded from the biceps brachii of the dominant limb and the signal was decomposed. A paired-samples t test was used to determine the number of repetitions completed between BFR and CON. ANOVAs (repetition [first, last] × condition [BFR, CON]) were used to determine differences in MFR vs. RT and MUAPAMP vs. RT relationships. Subjects completed more repetitions during CON (12 ± 4) than BFR (9 ± 2; p = 0.012). There was no significant interaction (p > 0.05) between the slopes and y-intercepts during the repetition × condition interaction for MUAPAMP vs. MFR. However, there was a main effect of repetition for the slopes of the MUAPAMP vs. RT (p = 0.041) but not the y-intercept (p = 0.964). Post hoc analysis (collapsed across condition) indicated that the slopes of the MUAPAMP vs. RT during the first repetition was less than the last repetition (first: 0.022 ± 0.003 mv/%MVC; last: 0.028 ± 0.004 mv/%MVC; p = 0.041). Blood flow restriction resulted in the same amount of higher threshold MU recruitment in approximately 75% of the repetitions. Furthermore, there was no change in MFR for either condition, even when taken to task failure. Thus, BFR training may create similar MU responses with less total work completed than training without BFR.
Assuntos
Eletromiografia , Antebraço , Contração Isométrica , Fadiga Muscular , Músculo Esquelético , Fluxo Sanguíneo Regional , Humanos , Masculino , Fadiga Muscular/fisiologia , Adulto , Contração Isométrica/fisiologia , Antebraço/irrigação sanguínea , Antebraço/fisiologia , Adulto Jovem , Músculo Esquelético/fisiologia , Músculo Esquelético/irrigação sanguínea , Fluxo Sanguíneo Regional/fisiologia , Terapia de Restrição de Fluxo SanguíneoRESUMO
ABSTRACT: Lubiak, SM, Lawson, JE, Gonzalez Rojas, DH, Proppe, CE, Rivera, PM, Hammer, SM, Trevino, MA, Dinyer-McNeely, TK, Montgomery, TR, Olmos, AA, Sears, KN, Bergstrom, HC, Succi, PJ, Keller, JL, and Hill, EC. A moderate blood flow restriction pressure does not affect maximal strength or neuromuscular responses. J Strength Cond Res XX(X): 000-000, 2024-The purpose of this study was to examine the acute effects of blood flow restriction (BFR) applied at 60% of total arterial occlusion pressure (AOP) on maximal strength. Eleven college-aged female subjects completed two testing sessions of maximal unilateral concentric, isometric, and eccentric leg extension muscle actions performed with and without BFR. Separate 3 (mode [isometric, concentric, eccentric]) × 2 (condition [BFR, no BFR]) × 2 (visit [2, 3]) repeated-measures analysis of variances were used to examine mean differences in maximal strength, neuromuscular function, rating of perceived exertion (RPE), and pain. For maximal strength (collapsed across condition and visit), isometric (128.5 ± 22.7 Nm) and eccentric (114.5 ± 35.4 Nm) strength were greater than concentric maximal strength (89.3 ± 22.3 Nm) (p < 0.001-0.041). Muscle excitation relative (%) to isometric non-BFR was greater during the concentric (108.6 ± 31.5%) than during the eccentric (86.7 ± 29.2%) (p = 0.045) assessments but not different than isometric (93.4 ± 17.9%) (p = 0.109) assessments, collapsed across condition and visit. For RPE, there was an interaction such that RPE was greater during non-BFR (4.3 ± 1.7) than during BFR (3.7 ± 1.7) (p = 0.031) during the maximal concentric strength assessments. Furthermore, during maximal strength assessments performed with BFR, isometric RPE (5.8 ± 1.9) was greater than concentric (3.7 ± 1.7) (p = 0.005) and eccentric (4.6 ± 1.9) (p = 0.009) RPE. Finally, pain was greater during the isometric (2.8 ± 2.1 au) than during the concentric (1.8 ± 1.5 au) (p = 0.016), but not eccentric, maximal strength assessments (2.1 ± 1.6 au) (p = 0.126), collapsed across condition and visit. The application of BFR at 60% AOP did not affect concentric, isometric, or eccentric maximal strength or neuromuscular function. Trainers, clinicians, and researchers can prescribe exercise interventions relative to a restricted (when using a moderate AOP) or nonrestricted assessment of maximal strength.
RESUMO
This study examined the effects of continuous endurance training on motor unit (MU) mean firing rates (MFR), percent myosin heavy chain (%MHC) isoforms, and muscle cross-sectional area (mCSA) of the vastus lateralis (VL). Twelve females completed 5-weeks of continuous cycling-training (CYC), while 8 females were controls (CON). Participants performed maximal voluntary contractions (MVCs) and 40% MVCs of the knee extensors before (PRE) and after the 5-week treatment period at the same absolute pre-treatment submaximal torque (POSTABS) and relative to post-treatment MVCs (POSTREL). Surface electromyographic (EMG) signals were decomposed with the Precision Decomposition III algorithm. MU firing times and waveforms were validated with reconstruct-and-test and spike trigger average procedures. MFRs at steady torque, recruitment thresholds (RT), and normalized EMG amplitude (N-EMGRMS) were analyzed. Y-intercepts and slopes were calculated for the MFR vs. RT relationships. MHC isoforms and mCSA were determined with muscle biopsies and ultrasonography. CYC decreased MVCs and type IIX %MHC isoform without changes in mCSA. The slopes for the MFR vs. RT relationships decreased for CYC during POSTREL and POSTABS while N-EMGRMS increased for POSTABS with no differences between PRE and POSTREL. Type I %MHC isoform was correlated with the slope for the MFR vs. RT relationship during POSTABS and POSTREL for CYC. This study provides evidence that decreases in the MFRs of higher threshold MUs post-CYC is likely a function of changes in input excitation (POSTABS) and the firing frequency-excitation relationships (POSTREL). Evidence is provided that MHC isoforms influence the firing rate scheme of the muscle following short-term training.
Assuntos
Cadeias Pesadas de Miosina , Músculo Quadríceps , Potenciais de Ação/fisiologia , Eletromiografia , Feminino , Humanos , Contração Isométrica/fisiologia , Músculo Esquelético/fisiologia , Músculo Quadríceps/diagnóstico por imagem , Músculo Quadríceps/fisiologia , Recrutamento Neurofisiológico/fisiologia , TorqueRESUMO
OBJECTIVES: To examine maximal strength and fatigability of the knee extensors, and mechanomyographic amplitude (MMGRMS)-force relationships of the vastus lateralis (VL) during repetitive muscle actions for 5 aerobically-(AT), 5 resistance-trained-(RT), and 5 sedentary (SED) individuals. METHODS: Participants performed maximal voluntary contractions before (MVCPRE) and after (MVCPOST) attempting 20 isometric trapezoidal muscle actions at 50% MVCPRE. MMG was recorded from the VL. b terms (slopes) were calculated from the natural log-transformed MMGRMS-force relationships for each participant (increasing and decreasing segments). MMGRMS was averaged during steady force. RESULTS: RT had greater MVCPRE (P<0.001) and MVCPOST (P=0.001-0.004) than AT and SED. Only AT completed 20 muscle actions and exhibited no decrease in MVCPOST (P=0.149). The b terms were greater for RT than AT during the increasing segment of the first contraction (P=0.001) and decreasing segment of the last contraction (P=0.033). The b terms were also greater for RT (P=0.006) during the increasing than decreasing segment for the first contraction. MMGRMS during steady force was greater during the last contraction when collapsed across training status (P=0.021). CONCLUSION: Knee extensor MVC and fatigability, and motor unit control strategies for the VL during a series of repetitive contractions were influenced by chronic training status.
Assuntos
Contração Isométrica , Músculo Quadríceps , Doença Crônica , Humanos , Contração Isométrica/fisiologia , Extremidade Inferior , Músculo Quadríceps/fisiologiaRESUMO
OBJECTIVE: This study examined motor unit (MU) firing rates during a prolonged isometric contraction of the vastus lateralis (VL) for females and males. METHODS: Surface electromyographic (sEMG) signals were recorded from the VL for eleven females and twelve males during a 45-second isometric trapezoid muscle actions at 40% of maximal voluntary contraction (MVC). For each MU, mean firing rate (MFR) was calculated for the initial and final 10-second epochs of the steady torque segment and regressed against recruitment threshold (RT, expressed as %MVC), as well as time at recruitment (TREC, seconds). MFR was also averaged for each subject. RESULTS: Significant differences existed across epochs for the y-intercepts (P=0.009) of the MFR vs. TREC relationship, as well as the grouped MFR analysis (P<0.001); no differences were observed between epochs for the MFR vs. RT relationship. Significant differences existed between sexes for the grouped MFR analysis (P=0.049), but no differences were observed for the MFR vs. TREC or MFR vs. RT relationships. CONCLUSION: Analysis method may impact interpretation of firing rate behavior; increases in MU firing rates across a prolonged isometric contraction were observed in the MFR vs. TREC relationship and the grouped MFR analysis.
Assuntos
Contração Isométrica , Recrutamento Neurofisiológico , Potenciais de Ação/fisiologia , Eletromiografia , Feminino , Humanos , Contração Isométrica/fisiologia , Masculino , Músculo Esquelético/fisiologia , Músculo Quadríceps/fisiologia , Recrutamento Neurofisiológico/fisiologiaRESUMO
PURPOSE: To examine the effects of 10 weeks of endurance cycling training on mechanomyographic amplitude (MMGRMS)-torque relationships and muscle cross-sectional area (mCSA) of the vastus lateralis (VL) for 10 sedentary males (Age ± SD; 20.2 ± 1.9 years) and 14 sedentary females (21.9 ± 5.3 years). METHODS: Participants performed maximal voluntary contractions (MVCs) and an isometric ramp up muscle action to 70% MVC of the knee extensors before (PRE) and after training at the same absolute pre-treatment submaximal torque (POSTABS). MMG was recorded from the VL and b terms were calculated from the natural log-transformed MMGRMS-torque relationships for each subject. mCSA was determined with ultrasonography. RESULTS: Cycling decreased MVCs from pre- (168.10 ± 58.49 Nm) to post-training (160.78 ± 58.39 Nm; p = 0.005) without changes in mCSA. The b terms were greater for POSTABS (0.623 ± 0.204) than PRE (0.540 ± 0.226; p = 0.012) and for males (0.717 ± 0.171) than females (0.484 ± 0.168; p = 0.003). mCSA was correlated with the b terms for PRE (p < 0.001, r = 0.674) and POSTABS (p = 0.020, r = 0.471). CONCLUSION: The decrease in MVC and increase in MMGRMS (b terms) post-training suggests increased motor unit (MU) recruitment to match pre-training torques. The greater acceleration in the b terms by males may reflect sex-related differences in fiber-type area. MMGRMS-torque relationships during a high-intensity contraction provided insight on MU activation strategies following endurance training and between sexes. Furthermore, the findings suggest a relationship between MMGRMS and muscle size.
Assuntos
Treino Aeróbico , Músculo Quadríceps/fisiologia , Recrutamento Neurofisiológico/fisiologia , Ciclismo/fisiologia , Fenômenos Biomecânicos , Feminino , Humanos , Masculino , Contração Muscular/fisiologia , Comportamento Sedentário , Fatores Sexuais , Torque , Ultrassonografia , Adulto JovemRESUMO
NEW FINDINGS: What is the central question of this study? Are differences in muscle size and motor unit properties between normal weight and overfat children muscle specific? What is the main finding and its importance? Muscle cross-sectional area and motor unit action potential amplitudes and firing rates were similar between overfat and normal weight children for both the medial gastrocnemius and vastus lateralis muscles. There was no evidence that the chronic mechanical overload provided by the greater body mass resulted in significant hypertrophy of contractile tissue or motor units that would be used during lower-to-moderate intensity activities. ABSTRACT: This study examined the possible differences in muscle cross-sectional area (mCSA), motor unit action potential amplitudes (MUAPAMPS ) and interspike intervals (ISIs) of the firing instances of the medial gastrocnemius (MG) and vastus lateralis (VL) between normal weight (NW) and overfat (OF) children aged 7-10 years. Fourteen NW (age = 8.6 ± 1.1 years, BMI = 15.8 ± 1.4 kg m-2 ) and 12 OF (age = 8.8 ± 0.9 years, BMI = 21.8 ± 2.4 kg m-2 ) children performed isometric trapezoidal muscle actions at 40% of maximal voluntary contraction of the plantar flexors and knee extensors. Surface electromyography was recorded from the MG and VL and decomposed into the firing events of motor units (MUs). Statistical procedures were performed on the composite recruitment thresholds (RTs), ISIs and MUAPAMPS of recorded MUs collapsed across subjects and the y-intercepts and slopes calculated from each subject's ISI and MUAPAMP vs. RT relationships. Ultrasound was used to assess mCSA, echo intensity (mEI), and subcutaneous fat (sFAT) of the MG and VL. The OF had greater mCSAs, mEI and sFAT (P = 0.004-0.024), but there were no differences in mCSA when accounting for mEI for the MG (P = 0.506) and VL (P = 0.326). The NW children had significantly greater composite MUAPAMPS for the VL and MG (P < 0.001), but only significantly larger MUAPAMPS of the VL remained for the NW (P < 0.001) when subjects were matched for sFAT. There were no differences between groups for the ISI or MUAPAMP vs. RT relationships (P > 0.05). These findings suggest that the OF children did not undergo significant muscle or MU hypertrophy that would be routinely activated during activities of daily living.
Assuntos
Exercício Físico/fisiologia , Músculo Esquelético/fisiologia , Obesidade Infantil/fisiopatologia , Músculo Quadríceps/fisiologia , Recrutamento Neurofisiológico/fisiologia , Potenciais de Ação/fisiologia , Peso Corporal/fisiologia , Criança , Feminino , Humanos , Masculino , Obesidade Infantil/diagnósticoRESUMO
Despite ample evidence that females are weaker and possess smaller muscle cross-sectional areas (CSAs) compared to males, it remains unclear if there are sex-related differences in the properties of motor units (MU). Eleven males (age 22 ± 3 years) and 12 females (age 21 ± 1 years) performed isometric trapezoid muscle actions at 10% and 70% of maximal voluntary contraction (MVC). Surface electromyography signals were recorded and decomposed into MU action potential (AP) waveforms and firing instances. Average MUAP amplitudes (MUAPAMPS), mean firing rates (MFRs), initial firing rates (IFRs), and recruitment thresholds (RT) were calculated for the 10% MVC, while MUAPAMPS, IFRs, and MFRs were regressed against RT for the 70% MVC. Ultrasonography was used to measure CSA of the first dorsal interosseous (FDI). Males had greater CSAs (p < 0.001; males 2.34 ± 0.28 cm2, females 1.82 ± 0.18 cm2) and MVC strength (p < 0.001; males 25.9 ± 5.5 N, females 16.44 ± 2.5 N). No differences existed for MUAPAMPS, IFRs, MFRs, or RTs (p > 0.05) during the 10% MVC. For the 70% MVC, the y-intercepts from the MUAPAMPS vs. RT relationships were greater (p < 0.05) for the males (males - 0.19 ± 0.53 mV; females - 0.78 ± 0.75 mV), while the inverse was true for the MFR vs. RT relationships (males 31.55 ± 6.92 pps, females 38.65 ± 6.71 pps) with no differences (p > 0.05) in the slopes. Therefore, smaller CSAs and weaker MVCs are likely the result of smaller higher-threshold MUs for females.
Assuntos
Potenciais de Ação/fisiologia , Atividade Motora/fisiologia , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Recrutamento Neurofisiológico/fisiologia , Caracteres Sexuais , Adulto , Eletromiografia , Feminino , Humanos , Masculino , Músculo Esquelético/diagnóstico por imagem , Fatores Sexuais , Ultrassonografia , Adulto JovemRESUMO
PURPOSE: Previous investigations analyzing resistance training's influence on motor unit (MU) firing rates have yielded mixed results. These mixed results may be clarified by concurrently measuring changes in MU size. Thus, this study analyzed whether post-training strength gains were due to increases in MU firing rates and/or sizes as measured indirectly via action potential amplitudes. METHODS: Sixteen males (age = 20.7 ± 1.9 years) completed 8 weeks of resistance training, while eight males (age = 19.4 ± 2.5 years) served as controls. Vastus lateralis surface electromyography signals collected during submaximal isometric knee extensions were decomposed to yield an action potential amplitude (MUAPAMP), mean firing rate (MFR), and recruitment threshold (RT) for each MU. Each contraction's average MFR and MUAPAMP, and coefficients of the linear (y-intercept and slope) MUAPAMP-RT, linear MFR-RT and exponential (A and B terms) MFR-MUAPAMP relationships were analyzed. Firing instances and action potentials were validated via reconstruct-and-test and spike-triggered averaging procedures. Vastus lateralis cross-sectional area (CSA) was analyzed with ultrasonography. RESULTS: Resistance training increased isometric strength from 204.6 ± 34.9 to 239.8 ± 36.3 Nm and vastus lateralis CSA from 28.7 ± 4.7 to 34.0 ± 5.0 cm2. Resistance training did not affect MFR-RT relationship parameters or average MFRs but did increase the slopes of the MUAPAMP-RT relationships (0.0067 ± 0.0041 to 0.0097 ± 0.0045 mV/%MVC) and average MUAPAMPs from 0.189 ± 0.093 to 0.249 ± 0.127 mV. MU hypertrophy altered the MFR-MUAPAMP relationships (B terms: - 3.63 ± 1.40 to - 2.66 ± 1.38 pps/mV). CONCLUSION: Resistance training induced MU and muscle hypertrophy, but did not alter firing rates. Greater MU twitch forces resulting from larger MUs firing at pre-training rates likely explain resistance training strength gains.
Assuntos
Potencial Evocado Motor , Contração Isométrica , Força Muscular , Músculo Quadríceps/fisiologia , Treinamento Resistido/métodos , Humanos , Masculino , Músculo Quadríceps/diagnóstico por imagem , Treinamento Resistido/efeitos adversos , Ultrassonografia , Adulto JovemRESUMO
Miller, JD, Lippman, JD, Trevino, MA, and Herda, TJ. Larger motor units are recruited for high-intensity contractions than for fatiguing moderate-intensity contractions. J Strength Cond Res 34(11): 3013-3021, 2020-The purpose of this study was to investigate whether moderate-intensity contractions performed to fatigue activate the motor unit (MU) pool to the same extent as a higher-intensity contraction. Subjects (7 men, 2 women, age = 22.78 ± 4.15 years, height = 173.78 ± 14.19 cm, mass = 87.39 ± 21.19 kg) performed 3 isometric maximum voluntary contractions (MVCs), an isometric trapezoidal contraction at 90% MVC (REP90), and repetitive isometric trapezoidal contractions at 50% MVC performed to failure with the first (REP1) and final repetition (REPL) used for analysis. Surface EMG was recorded from the vastus lateralis. Action potentials were extracted into firing events of single MUs with recruitment thresholds (RTs), MU action potential amplitudes (MUAPAMP), and mean firing rates (MFRs) recorded. Linear MFR and MUAPAMP vs. RT and exponential MFR vs. MUAPAMP relationships were calculated for each subject. The level of significance was set at p ≤ 0.05. B terms for the MFR vs. MUAPAMP relationships (p = 0.001, REPL = -4.77 ± 1.82 pps·mV, REP90 = -2.63 ± 1.00 pps·mV) and predicted MFRs for MUs recruited at 40% MVC (p < 0.001, REPL = 11.14 ± 3.48 pps, REP90 = 18.38 ± 2.60 pps) were greater for REP90 than REPL indicating firing rates were greater during REP90. In addition, larger mean (p = 0.038, REPL = 0.178 ± 0.0668 mV, REP90 = 0.263 ± 0.128 mV) and maximum (p = 0.008, REPL = 0.320 ± 0.127 mV, Rep90 = 0.520 ± 0.234 mV) MUAPAMPS were recorded during REP90 than REPL. Larger MUs were recruited and similar sized MUs maintained greater firing rates during a high-intensity contraction in comparison to a moderate-intensity contraction performed at fatigue. Individuals seeking maximized activation of the MU pool should use high-intensity resistance training paradigms rather than moderate-intensity to fatigue.
Assuntos
Contração Isométrica/fisiologia , Fadiga Muscular/fisiologia , Músculo Quadríceps/fisiologia , Recrutamento Neurofisiológico/fisiologia , Potenciais de Ação/fisiologia , Adulto , Eletromiografia , Feminino , Humanos , Masculino , Adulto JovemRESUMO
PURPOSE: Previous research has indicated greater muscle activation is needed for children (CH) to match relative intensity submaximal contractions in comparison with adults (AD). However, no study has compared motor unit (MU) firing and recruitment patterns between children and adults. Therefore, MU action potential amplitudes (MUAPAMP) and firing rates were examined during two repetitive submaximal contractions of the first dorsal interosseous in children and adults. METHODS: Twenty-two children (age 9.0 ± 0.8 years) and 13 adults (age 22.9 ± 4.8 years) completed three maximum voluntary contractions (MVC) and two repetitive isometric contractions at 30% MVC for 40 s. Surface electromyography (EMG) was recorded and decomposed into action potential trains. MUAPAMPS, recruitment thresholds (RTs), and mean firing rates (MFRs) were calculated, and EMG amplitude was normalized (N-EMG) to MVC. For each subject and repetition, linear MFR vs. RT and exponential MUAPAMP vs. RT and MFR vs. MUAPAMP relationships were calculated. RESULTS: N-EMG (P = 0.001, CH = 56.5 ± 31.7%, AD = 30.3 ± 9.1%), MFRs regardless of RT, according to greater y-intercepts of the MFR vs. RT relationships [P = 0.013, CH = 31.1 ± 5.1 pulses per second (pps), AD = 25.9 ± 4.3 pps] and MFRs of MUs with smaller action potential amplitudes (P = 0.017, CH = 29.4 ± 6.8 pps, AD = 23.5 ± 3.5 pps), were greater for children. MUAPAMPS in relation with RT were similar between groups except the highest threshold MUs (RT = 28% MVC) were greater for the adults (1.02 ± 0.43 mV) than children (0.67 ± 0.24 mV) (P = 0.010). CONCLUSIONS: Muscle activation and MU firing rates were greater for children, which likely indicated a greater operating point of MU control in comparison with adults during an isometric contraction performed at a relative submaximal intensity.
Assuntos
Potenciais de Ação/fisiologia , Contração Isométrica/fisiologia , Fadiga Muscular/fisiologia , Músculo Esquelético/fisiologia , Adolescente , Adulto , Criança , Feminino , Humanos , Masculino , Neurônios Motores/fisiologia , Recrutamento Neurofisiológico/fisiologia , Adulto JovemRESUMO
We examined differences between normal weight (NW) and overweight (OW) children aged 8-10 yr in strength, muscle composition, and motor unit (MU) behavior of the first dorsal interosseous. Ultrasonography was used to determine muscle cross-sectional area (CSA), subcutaneous fat (sFAT), and echo intensity (EI). MU behavior was assessed during isometric muscle actions at 20% and 50% of maximal voluntary contraction (MVC) by analyzing electromyography amplitude (EMGRMS) and relationships between mean firing rates (MFR), recruitment thresholds (RT), and MU action potential amplitudes (MUAPsize) and durations (MUAPtime). The OW group had significantly greater EI than the NW group ( P = 0.002; NW, 47.99 ± 6.01 AU; OW, 58.90 ± 10.63 AU, where AU is arbitrary units) with no differences between groups for CSA ( P = 0.688) or MVC force ( P = 0.790). MUAPsize was larger for NW than OW in relation to RT ( P = 0.002) and for MUs expressing similar MFRs ( P = 0.011). There were no significant differences ( P = 0.279-0.969) between groups for slopes or y-intercepts from the MFR vs. RT relationships. MUAPtime was larger in OW ( P = 0.015) and EMGRMS was attenuated in OW compared with NW ( P = 0.034); however, there were no significant correlations ( P = 0.133-0.164, r = 0.270-0.291) between sFAT and EMGRMS. In a muscle that does not support body mass, the OW children had smaller MUAPsize as well as greater EI, although anatomical CSA was similar. This contradicts previous studies examining larger limb muscles. Despite evidence of smaller MUs, the OW children had similar isometric strength compared with NW children. NEW & NOTEWORTHY Ultrasound data and motor unit action potential sizes suggest that overweight children have poorer muscle composition and smaller motor units in the first dorsal interosseous than normal weight children. Evidence is presented that suggests differences in action potential size cannot be explained by differences in subcutaneous fat alone.
Assuntos
Potenciais de Ação/fisiologia , Dedos/fisiologia , Neurônios Motores/fisiologia , Força Muscular/fisiologia , Músculo Esquelético , Sobrepeso , Gordura Subcutânea/diagnóstico por imagem , Criança , Eletromiografia , Feminino , Humanos , Masculino , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Sobrepeso/diagnóstico por imagem , Sobrepeso/metabolismo , Sobrepeso/fisiopatologia , Obesidade Infantil/diagnóstico por imagem , Obesidade Infantil/metabolismo , Obesidade Infantil/fisiopatologia , UltrassonografiaRESUMO
Neuromuscular function in young overweight/obese (OF) children is not well described. AIM: This study examined isometric and isokinetic leg extensor strength, muscle size (mCSA) and tissue composition as measured via echo intensity (mEI), and motor unit (MU) firing rates in normal weight (NW) and OF children aged 7-10 years. METHODS: Fourteen NW (eight girls and six boys, BMI: 15.8 ± 1.4 kg/m2 ) and 15 OF (10 girls and five boys, BMI: 20.8 ± 2.3 kg/m2 ) children volunteered to perform this study. Percentage body fat (%BF) was measured, and mCSA, mEI, and subcutaneous fat (sFAT) of the vastus lateralis (VL) was assessed. MU mean firing rates (MFRs) in relation to recruitment threshold (RT) of the VL were assessed during submaximal isometric contractions. Maximal isokinetic contractions were performed at 1.05 and 4.20 rad/s. The 95% confidence intervals (CI) from the statistical tests are presented. RESULTS: The OF children had greater %BF (95% CI = -15.1 to -7.2), mCSA (95% CI = -4.1 to -1.2), mEI (95% CI = -22.3 to -5.9), and sFAT (95% CI = -0.5 to -0.1), greater rate of strength loss with increasing isokinetic velocities (95% CI = 0.4 to 5.4), and a smaller range of MFRs (95% CI = 0.007 to 7.136) at the steady torque than the NW children. CONCLUSIONS: The OF children had poorer muscle tissue composition, greater velocity-related impairments in muscle strength, and a smaller range of MFRs at the targeted torque that may suggest altered MU recruitment strategies. Interventions in OF children should include exercises and recruit higher-threshold MUs, such as high-intensity resistance exercises.
Assuntos
Sobrepeso/fisiopatologia , Músculo Quadríceps/fisiologia , Músculo Quadríceps/fisiopatologia , Recrutamento Neurofisiológico , Potenciais de Ação , Adiposidade , Estudos de Casos e Controles , Criança , Eletromiografia , Feminino , Humanos , Contração Isométrica , Masculino , Força Muscular , Gordura Subcutânea/diagnóstico por imagem , Torque , UltrassonografiaRESUMO
This study examined motor unit (MU) amplitudes (APAMPS) and firing rates during moderate-intensity contractions and muscle cross-sectional area (mCSA) and echo intensity (mEI) of the vastus lateralis (VL) in chronically endurance-trained and sedentary females. Eight endurance-trained (ET) and nine sedentary controls (SED) volunteered for this study. Surface electromyographic (EMG) signals from a five-pin electrode array were recorded from the VL during isometric trapezoid muscle actions at 40% of maximal voluntary contraction (MVC). Decomposition methods were applied to the EMG signals to extract the firing events and amplitudes of single MUs. The mean firing rate (MFR) during steady force and MUAPAMP for each MU was regressed against recruitment threshold (RT, expressed as %MVC). The y-intercepts and slopes from the MFR and MUAPAMP vs. RT relationships were calculated. EMG amplitude during steady force was normalized (N-EMGRMS) to peak EMG amplitude recorded during the MVC. Ultrasonography was used to measure mCSA and mEI. Significant differences existed between the ET and SED for the slopes (P = 0.005, P = 0.001) from the MFR and MUAPAMP vs. RT relationships with no differences for the y-intercepts (P > 0.05). N-EMGRMS was significantly (P = 0.033) lower for the ET than SED. There were no differences between groups for mCSA; however, the SED possessed significantly (P = 0.001) greater mEI. Subsequently, the ET likely possessed hypertrophied and stronger MUs that allowed for lower necessary muscle activation to maintain the same relative task as the SED. The larger MUs for the ET is supported via the MFR vs. RT relationships and ultrasound data.
Assuntos
Contração Isométrica/fisiologia , Fadiga Muscular/fisiologia , Músculo Esquelético/fisiologia , Músculo Quadríceps/fisiologia , Potenciais de Ação/fisiologia , Adulto , Eletromiografia/métodos , Feminino , Humanos , Neurônios Motores/fisiologia , Recrutamento Neurofisiológico/fisiologia , Treinamento Resistido , Adulto JovemRESUMO
NEW FINDINGS: What is the central question of this study? The influences of motor unit recruitment threshold and twitch force potentiation on the changes in firing rates during steady-force muscular contractions are not well understood. What is the main finding and its importance? The behaviour of motor units during steady force was influenced by recruitment threshold, such that firing rates decreased for lower-threshold motor units but increased for higher-threshold motor units. In addition, individuals with greater changes in firing rates possessed greater twitch force potentiation. There are contradictory reports regarding changes in motor unit firing rates during steady-force contractions. Inconsistencies are likely to be the result of previous studies disregarding motor unit recruitment thresholds and not examining firing rates on a subject-by-subject basis. It is hypothesized that firing rates are manipulated by twitch force potentiation during contractions. Therefore, in this study we examined time-related changes in firing rates at steady force in relationship to motor unit recruitment threshold in the first dorsal interosseous and the influence of twitch force potentiation on such changes in young versus aged individuals. Subjects performed a 12 s steady-force contraction at 50% maximal voluntary contraction, with evoked twitches before and after the contraction to quantify potentiation. Firing rates, in relationship to recruitment thresholds, were determined at the beginning, middle and end of the steady force. There were no firing rate changes for aged individuals. For the young, firing rates decreased slightly for lower-threshold motor units but increased for higher-threshold motor units. Twitch force potentiation was greater for young than aged subjects, and changes in firing rates were correlated with twitch force potentiation. Thus, individuals with greater increases in firing rates of higher-threshold motor units and decreases in lower-threshold motor units possessed greater twitch force potentiation. Overall, changes in firing rates during brief steady-force contractions are dependent on recruitment threshold and explained in part by twitch force potentiation. Given that firing rate changes were measured in relationship to recruitment threshold, this study illustrates a more complete view of firing rate changes during steady-force contractions.
Assuntos
Potenciais de Ação/fisiologia , Recrutamento Neurofisiológico/fisiologia , Adulto , Feminino , Humanos , Contração Isométrica/fisiologia , Masculino , Pessoa de Meia-Idade , Neurônios Motores/fisiologia , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Adulto JovemRESUMO
INTRODUCTION: The purpose of this study was to determine the effects of vibration (VIB) on motor unit (MU) behavior of the vastus lateralis (VL) muscle during a 40% maximal voluntary contraction (MVC). METHODS: Eleven healthy (age 21.3 ± 2.6 years) individuals participated in the study. Surface electromyography (EMG) data were recorded from the VL during isometric trapezoidal muscle contractions at 40% MVC. Firing events of single MUs and EMG amplitude were reported for the first, middle, and final seconds of a 12-second steady force segment at 40% MVC. VIB was applied at 55 Hz to the patellar tendon for 15 minutes before and continued throughout the remainder of testing (VIB) or remained off (CON). RESULTS: There were significant increases in MU firing rates during VIB in comparison to CON and no differences in EMG amplitude between VIB and CON. CONCLUSION: The VIB-mediated reduction in muscle spindle function altered MU behavior at 40% MVC. Muscle Nerve 55: 500-507, 2017.
Assuntos
Potencial Evocado Motor/fisiologia , Contração Isométrica/fisiologia , Neurônios Motores/fisiologia , Recrutamento Neurofisiológico/fisiologia , Vibração , Adulto , Análise de Variância , Eletromiografia , Voluntários Saudáveis , Humanos , Masculino , Dinamômetro de Força Muscular , Músculo Esquelético/fisiologia , Adulto JovemRESUMO
It is suggested that firing rate characteristics of motor units (MUs) are influenced by the physical properties of the muscle. However, no study has correlated MU firing rates at recruitment, targeted force, or derecruitment with the contractile properties of the muscle in vivo. Twelve participants (age = 20.67 ± 2.35 yr) performed a 40% isometric maximal voluntary contraction of the leg extensors that included linearly increasing, steady force, and decreasing segments. Muscle biopsies were collected with myosin heavy chain (MHC) content quantified, and surface electromyography (EMG) was recorded from the vastus lateralis. The EMG signal was decomposed into the firing events of single MUs. Slopes and y-intercepts were calculated for 1) firing rates at recruitment vs. recruitment threshold, 2) mean firing rates at steady force vs. recruitment threshold, and 3) firing rates at derecruitment vs. derecruitment threshold relationships for each subject. Correlations among type I %MHC isoform content and the slopes and y-intercepts from the three relationships were examined. Type I %MHC isoform content was correlated with MU firing rates at recruitment (y-intercepts: r = -0.577; slopes: r = 0.741) and targeted force (slopes: r = 0.853) vs. recruitment threshold and MU firing rates at derecruitment (y-intercept: r = -0.597; slopes: r = 0.701) vs. derecruitment threshold relationships. However, the majority of the individual MU firing rates vs. recruitment and derecruitment relationships were not significant (P > 0.05) and, thus, revealed no systematic pattern. In contrast, MU firing rates during the steady force demonstrated a systematic pattern with higher firing rates for the lower- than higher-threshold MUs and were correlated with the physical properties of MUs in vivo.