Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
NMR Biomed ; 36(5): e4884, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36453877

RESUMO

The peritumoral vasogenic edema (PVE) in brain tumors exhibits varied characteristics. Brain metastasis (BM) and meningioma barely have tumor cells in PVE, while glioblastoma (GB) show tumor cell infiltration in most subjects. The purpose of this study was to investigate the PVE of these three pathologies using radiomics features in FLAIR images, with the hypothesis that the tumor cells might influence textural variation. Ex vivo experimentation of radiomics analysis of T1-weighted images of the culture medium with and without suspended tumor cells was also attempted to infer the possible influence of increasing tumor cells on radiomics features. This retrospective study involved magnetic resonance (MR) images acquired using a 3.0-T MR machine from 83 patients with 48 GB, 21 BM, and 14 meningioma. The 93 radiomics features were extracted from each subject's PVE mask from three pathologies using T1-dynamic contrast-enhanced MR imaging. Statistically significant (< 0.05, independent samples T-test) features were considered. Features maps were also computed for qualitative investigation. The same was carried out for T1-weighted cell line images but group comparison was carried out using one-way analysis of variance. Further, a random forest (RF)-based machine learning model was designed to classify the PVE of GB and BM. Texture-based variations, especially higher nonuniformity values, were observed in the PVE of GB. No significance was observed between BM and meningioma PVE. In cell line images, the culture medium had higher nonuniformity and was considerably reduced with increasing cell densities in four features. The RF model implemented with highly significant features provided improved area under the curve results. The possible infiltrative tumor cells in the PVE of the GB are likely influencing the texture values and are higher in comparison with BM PVE and may be of value in the differentiation of solitary metastasis from GB. However, the robustness of the features needs to be investigated with a larger cohort and across different scanners in the future.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Neoplasias Meníngeas , Meningioma , Humanos , Glioblastoma/diagnóstico por imagem , Glioblastoma/patologia , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Perfusão , Edema
2.
Metabolomics ; 19(1): 5, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36635559

RESUMO

INTRODUCTION: Blast induced Traumatic brain injury (BI-TBI) is common among military personnels as well as war affected civilians. In the war zone, people can also encounter repeated exposure of blast wave, which may affect their cognition and metabolic alterations. OBJECTIVE: In this study we assess the metabolic and histological changes in the hippocampus of rats at 24 h post injury. METHOD: Rats were divided into four groups: (i) Sham; (ii) Mild TBI (mi); (iii) Moderate TBI (mo); and (iv) Repetitive mild TBI (rm TBI) and then subjected to different intensities of blast exposure. Hippocampal tissues were collected after 24 h of injury for proton nuclear magnetic resonance spectroscopy (1H NMR spectroscopy) and immunohistochemical (IHC) analysis. RESULTS: The metabolic alterations were found in the hippocampal tissue samples and these alterations showed significant change in glutamate, N-Acetylaspartic acid (NAA), acetate, creatine, phosphoethanolamine (PE), ethanolamine and PC/choline concentrations in rmTBI rats only. IHC studies revealed that AH3 (Acetyl histone) positive cells were decreased in rm TBI tissue samples in comparison to other TBI groups and sham rats. This might reflect an epigenetic alteration due to repeated blast exposure at 24 h post injury. Additionally, astrogliosis was observed in miTBI and moTBI hippocampal tissue while no change was observed in rmTBI tissues. CONCLUSION: The present study reports altered acetylation in the presence of altered metabolism in hippocampal tissue of blast induced rmTBI at 24 h post injury. Mechanistic understanding of these intertwined processes may help in the development of better therapeutic pathways and agents for blast induced TBI in near future.


Assuntos
Traumatismos por Explosões , Lesões Encefálicas Traumáticas , Hipocampo , Metabolômica , Animais , Ratos , Acetilação , Lesões Encefálicas Traumáticas/metabolismo , Hipocampo/metabolismo , Espectroscopia de Ressonância Magnética , Traumatismos por Explosões/metabolismo
3.
Metabolomics ; 18(5): 28, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35486220

RESUMO

INTRODUCTION: Closed head injury (CHI) causes neurological disability along with systemic alterations that can activate neuro-endocrine response through hypothalamic-pituitary-adrenal (HPA) axis activation. A dysregulated HPA axis function can lead to relocation of energy substrates and alteration in metabolic pathways and inflammation at the systemic level. OBJECTIVES: Assessment of time-dependent changes in serum metabolites and inflammation after both mild and moderate CHI. Along with this, serum corticosterone levels and hypothalamic microglial response were observed. METHODS: Rats underwent mild and moderate weight-drop injury and their serum and hypothalamus were assessed at acute, sub-acute and chronic timepoints. Changes in serum metabolomics were determined using high resolution NMR spectroscopy. Serum inflammatory cytokine, corticosterone levels and hypothalamic microglia were assessed at all timepoints. RESULTS: Metabolites including lactate, choline and branched chain amino acids were found as the classifiers that helped distinguish between control and injured rats during acute, sub-acute and chronic timepoints. While, increased αglucose: ßglucose and TMAO: choline ratios after acute and sub-acute timepoints of mild injury differentiated from moderate injured rats. The injured rats also showed distinct inflammatory profile where IL-1ß and TNF-α levels were upregulated in moderate injured rats while IL-10 levels were downregulated in mild injured rats. Furthermore, injury specific alterations in serum metabolic and immunologic profile were found to be associated with hyperactive HPA axis, with consistent increase in serum corticosterone concentration post injury. The hypothalamic microglia showed a characteristic activated de-ramified cellular morphology in both mild and moderate injured rats. CONCLUSION: The study suggests that HPA axis hyperactivity along with hypothalamic microglial activation led to temporal changes in the systemic metabolism and inflammation. These time dependent changes in the metabolite profile of rats can further strengthen the knowledge of diagnostic markers and help distinguish injury related outcomes after TBI.


Assuntos
Traumatismos Cranianos Fechados , Sistema Hipófise-Suprarrenal , Animais , Colina/metabolismo , Corticosterona/metabolismo , Traumatismos Cranianos Fechados/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Inflamação/metabolismo , Metabolômica , Sistema Hipófise-Suprarrenal/metabolismo , Ratos
4.
Metabolomics ; 16(3): 39, 2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-32166461

RESUMO

INTRODUCTION: Blast-induced neurotrauma (BINT) has been recognized as the common mode of traumatic brain injury amongst military and civilian personnel due to an increased insurgent activity domestically and abroad. Previous studies from this laboratory have identified three major pathological events following BINT which include blood brain barrier disruption the earliest event, followed by oxidative stress and neuroinflammation as secondary events occurring a few hours following blast. OBJECTIVES: Our recent studies have also identified an increase in oxidative stress mediated by the activation of superoxide producing enzyme NADPH oxidase (NOX) in different brain regions at varying levels with neurons displaying higher oxidative stress (NOX activation) compared to any other neural cell. Since neurons have higher energy demands in brain and are more prone to oxidative damage, this study evaluated the effect of oxidative stress on blast-blast induced changes in metabolomics profiles in different brain regions. METHODS: Animals were exposed to mild/moderate blast injury (180 kPa) and examined the metabolites of energy metabolism, amino acid metabolism as well as the profiles of plasma membrane metabolites in different brain regions at different time points (24 h, 3 day and 7 day) after blast using 1H NMR spectroscopy. Effect of apocynin, an inhibitor of superoxide producing enzyme NADPH oxidase on cerebral metabalomics profiles was also examined. RESULTS: Several metabolomic profile changes were observed in frontal cortex and hippocampus with concomitant decrease in energy metabolism. In addition, glutamate/glutamine and other amino acid metabolism as well as metabolites involved in plasma membrane integrity were also altered. Hippocampus appears metabolically more vulnerable than the frontal cortex. A post-treatment of animals with apocynin, an inhibitor of NOX activation significantly prevented the changes in metabolite profiles. CONCLUSION: Together these studies indicate that blast injury reduces both cerebral energy and neurotransmitter amino acid metabolism and that oxidative stress contributes to these processes. Thus, strategies aimed at reducing oxidative stress can have a therapeutic benefit in mitigating metabolic changes following BINT.


Assuntos
Traumatismos por Explosões/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Modelos Animais de Doenças , Estresse Oxidativo , Acetofenonas , Animais , Traumatismos por Explosões/patologia , Lesões Encefálicas Traumáticas/induzido quimicamente , Lesões Encefálicas Traumáticas/patologia , Masculino , Metabolômica , Ratos , Ratos Sprague-Dawley
5.
NMR Biomed ; 30(10)2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28759166

RESUMO

Traumatic brain injury (TBI) has been shown to affect hippocampus-associated learning, memory and higher cognitive functions, which may be a consequence of metabolic alterations. Hippocampus-associated disorders may vary depending on the severity of injury [mild TBI (miTBI) and moderate TBI (moTBI)] and time since injury. The underlying hippocampal metabolic irregularities may provide an insight into the pathological process following TBI. In this study, in vivo and in vitro proton magnetic resonance spectroscopy (1 H-MRS) data were acquired from the hippocampus region of controls and TBI groups (miTBI and moTBI) at D0 (pre-injury), 4 h, Day 1 and Day 5 post-injury (PI). In vitro MRS results indicated trauma-induced changes in both miTBI and moTBI; however, in vivo MRS showed metabolic alterations in moTBI only. miTBI and moTBI showed elevated levels of osmolytes indicating injury-induced edema. Altered levels of citric acid cycle intermediates, glutamine/glutamate and amino acid metabolism indicated injury-induced aberrant bioenergetics, excitotoxicity and oxidative stress. An overall similar pattern of pathological process was observed in both miTBI and moTBI, with the distinction of depleted N-acetylaspartate levels (indicating neuronal loss) at 4 h and Day 1 and enhanced lactate production (indicating heightened energy depletion leading to the commencement of the anaerobic pathway) at Day 5 in moTBI. To the best of our knowledge, this is the first study to investigate the hippocampus metabolic profile in miTBI and moTBI simultaneously using in vivo and in vitro MRS.


Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Hipocampo/metabolismo , Metaboloma , Animais , Análise Discriminante , Hipocampo/patologia , Análise dos Mínimos Quadrados , Espectroscopia de Ressonância Magnética , Masculino , Redes e Vias Metabólicas , Análise de Componente Principal , Espectroscopia de Prótons por Ressonância Magnética , Ratos Sprague-Dawley
6.
NMR Biomed ; 29(12): 1748-1758, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27779341

RESUMO

Mild traumatic brain injury (mTBI) is the most common form of TBI (70-90%) with consequences of anxiety-like behavioral alterations in approximately 23% of mTBI cases. This study aimed to assess whether mTBI-induced anxiety-like behavior is a consequence of neurometabolic alterations. mTBI was induced using a weight drop model to simulate mild human brain injury in rodents. Based on injury induction and dosage of anesthesia, four animal groups were included in this study: (i) injury with anesthesia (IA); (ii) sham1 (injury only, IO); (iii) sham2 (only anesthesia, OA); and (iv) control rats. After mTBI, proton magnetic resonance spectroscopy (1 H-MRS) and neurobehavioral analysis were performed in these groups. At day 5, reduced taurine (Tau)/total creatine (tCr, creatine and phosphocreatine) levels in cortex were observed in the IA and IO groups relative to the control. These groups showed mTBI-induced anxiety-like behavior with normal cognition at day 5 post-injury. An anxiogenic effect of repeated dosage of anesthesia in OA rats was observed with normal Tau/tCr levels in rat cortex, which requires further examination. In conclusion, this mTBI model closely mimics human concussion injury with anxiety-like behavior and normal cognition. Reduced cortical Tau levels may provide a putative neurometabolic basis of anxiety-like behavior following mTBI.


Assuntos
Comportamento Animal , Concussão Encefálica/fisiopatologia , Modelos Animais de Doenças , Hipocampo/metabolismo , Transtornos Mentais/fisiopatologia , Espectroscopia de Prótons por Ressonância Magnética/métodos , Taurina/metabolismo , Animais , Biomarcadores/metabolismo , Concussão Encefálica/complicações , Humanos , Masculino , Transtornos Mentais/etiologia , Imagem Molecular/métodos , Projetos Piloto , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
7.
Neuroreport ; 35(2): 75-80, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38064354

RESUMO

The objective of the study was to observe the effect of moderate closed-head injury on hippocampal, thalamic, and striatal tissue metabolism with time. Closed head injury is responsible for metabolic changes. These changes can be permanent or temporary, depending on the injury's impact. For the experiment, 20 rats were randomly divided into four groups, each containing five animals. Animals were subjected to injury using a modified Marmarou's weight drop device; hippocampal, thalamic, and striatal tissue samples were collected after 1 day, 3 days, and 7 days of injury. NMR spectra were acquired following sample processing. Changes in myo-inositol, creatine, glutamate, succinate, lactate, and N-acetyl aspartic acid in hippocampal tissues were observed at day 3 PI. The tyrosine level in the hippocampus was altered at day 7 PI. While thalamic and striatal tissue samples showed altered levels of branched-chain amino acids and myo-inositol at day 1PI. Taurine, gamma amino butyric acid (GABA), choline, and alpha keto-glutarate levels were found to be significantly altered in striatal tissues at days 1 and 3PI. Acetate and GABA levels were altered in the thalamus on day 1 PI. The choline level in the thalamus was found to alter at all-time points after injury. The alteration in these metabolites may be due to the alteration in their respective pathways. Neurotransmitter and energy metabolism pathways were found to be altered in all three brain regions after TBI. This study may help better understand the effect of injury on the metabolic balance of a specific brain region and recovery.


Assuntos
Lesões Encefálicas Traumáticas , Encéfalo , Ratos , Animais , Ratos Sprague-Dawley , Encéfalo/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Ácido gama-Aminobutírico/metabolismo , Inositol/farmacologia , Colina/metabolismo
8.
Brain Struct Funct ; 229(4): 853-863, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38381381

RESUMO

Blunt and diffuse injury is a highly prevalent form of traumatic brain injury (TBI) which can result in microstructural alterations in the brain. The blunt impact on the brain can affect the immediate contact region but can also affect the vulnerable regions like hippocampus, leading to functional impairment and long-lasting cognitive deficits. The hippocampus of the moderate weight drop injured male rats was longitudinally assessed for microstructural changes using in vivo MR imaging from 4 h to Day 30 post-injury (PI). The DTI analysis found a prominent decline in the apparent diffusion coefficient (ADC), radial diffusivity (RD), and axial diffusivity (AD) values after injury. The perturbed DTI scalars accompanied histological changes in the hippocampus, wherein both the microglia and astrocytes showed changes in the morphometric parameters at all timepoints. Along with this, the hippocampus showed presence of Aß positive fibrils and neurite plaques after injury. Therefore, this study concludes that TBI can lead to a complex morphological, cellular, and structural alteration in the hippocampus which can be diagnosed using in vivo MR imaging techniques to prevent long-term functional deficits.


Assuntos
Lesões Encefálicas Traumáticas , Imagem de Tensor de Difusão , Ratos , Masculino , Animais , Imagem de Tensor de Difusão/métodos , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Encéfalo/patologia , Imagem de Difusão por Ressonância Magnética , Hipocampo/patologia
9.
Mil Med ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38776149

RESUMO

INTRODUCTION: Occupational exposure to blast is a prevalent risk experienced by military personnel. While low-level exposure may not manifest immediate signs of illness, prolonged and repetitive exposure may result in neurophysiological dysfunction. Such repeated exposure to occupational blasts has been linked to structural and functional modifications in the brain, adversely affecting the performance of servicemen in the field. These neurological changes can give rise to symptoms resembling concussion and contribute to the development of post-traumatic stress disorder. MATERIALS AND METHODS: To understand long-term effects of blast exposure, the study was conducted to assess memory function, serum circulatory protein and lipid biomarkers, and associated concussive symptomology in servicemen. Concussion-like symptoms were assessed using the Rivermead Post-Concussion Symptoms Questionnaire (RPSQ) along with memory function using PGI memory scale. The serum protein biomarkers were quantified using a sandwich ELISA assay, and the serum lipid profile was measured using liquid chromatography-mass spectrometer. RESULTS: The findings revealed that repeated low-level blast exposure resulted in impaired memory function, accompanied by elevated levels of serum neurofilament light chain (neuroaxonal injury) and C-reactive protein. Furthermore, alterations in the lipid profile were observed, with an increase in lipid species associated with immune activation. These changes collectively point to systemic inflammation, neuronal injury, and memory dysfunction as pathological characteristics of repeated low-level blast exposure. CONCLUSION: The results of our preliminary investigation offer valuable insights for further large-scale study and provide a guiding principle that necessitates a suitable mitigation approach to safeguard the health of personnel against blast overpressure.

10.
NMR Biomed ; 26(12): 1733-41, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24038203

RESUMO

Understanding early differential response of brain during whole body radiation or cranial radiation exposure is of significant importance for better injury management during accidental or intentional exposure to ionizing radiation. We investigated the early microstructural and metabolic profiles using in vivo diffusion tensor imaging (DTI) and proton magnetic resonance spectroscopy ((1)H MRS) following whole body and cranial radiation exposure of 8 Gy in mice using a 7.0 T animal MRI system and compared profiles with sham controls at days 1, 3, 5 and 10 post irradiation. A significant decrease in fractional anisotropy (FA) values was found in hippocampus, thalamic and hypothalamic regions (p < 0.05) in both whole body and cranial irradiated groups compared with controls, suggesting radiation induced reactive astrogliosis or neuroinflammatory response. In animals exposed to whole body radiation, FA was significantly decreased in some additional brain regions such as sensory motor cortex and corpus callosum in comparison with cranial irradiation groups and controls. Changes in FA were observed till day 10 post irradiation in both the groups. However, MRS study from hippocampus revealed changes only in the whole body radiation dose group. Significant reduction in the ratios of the metabolites myoinositol (mI, p = 0.02) and taurine (tau, p = 0.03) to total creatine were observed, and these metabolic alterations persisted till day 10 post irradiation. To the best of our knowledge this study has for the first time documented a comparative account of microstructural and metabolic aspects of whole body and cranial radiation induced early brain injury using in vivo MRI. Overall our findings suggest differential response at microstructure and metabolite levels following cranial or whole body radiation exposure.


Assuntos
Encéfalo/metabolismo , Irradiação Craniana , Imagem de Tensor de Difusão , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Irradiação Corporal Total , Animais , Anisotropia , Masculino , Camundongos , Fatores de Tempo
11.
J Neurosci Res ; 90(10): 2009-19, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22605562

RESUMO

The nuclear arsenal and the use of nuclear technologies have enhanced the likelihood of whole-body/partial-body radiation exposure. The central nervous system is highly susceptible to even low doses of radiation. With the aim of detecting and monitoring the pathologic changes of radiation-induced damage in brain parenchyma, we used serial diffusion tensor magnetic resonance imaging (DTI) with a 7T magnetic resonance unit and neurobehavioral assessments mice irradiated with 3-, 5-, and 8-Gy doses of radiation. Fractional anisotropy (FA) and mean diffusivity (MD) values at each time point (baseline, day 1, day 5, and day 10) were quantified from hippocampus, thalamus, hypothalamus, cudate-putamen, frontal cortex, sensorimotor cortex, corpus callosum, cingulum, and cerebral peduncle. Behavioral tests were performed at baseline, day 5, and day 10. A decrease in FA values with time was observed in all three groups. At day 10, dose-dependent decreases in FA and MD values were observed in all of the regions compared with baseline. Behavioral data obtained in this study correlate with FA values. Radiation-induced affective disorders were not radiation dose dependent, insofar as the anxiety-like symptoms at the lower dose (3 Gy) mimics to the symptoms with the higher dose (8 Gy) level but not with the moderate dose. However, there was a dose-dependent decline in cognitive function as well as FA values. Behavioral data support the DTI indices, so it is suggested that DTI may be a useful tool for noninvasive monitoring of radiation-induced brain injury.


Assuntos
Comportamento Animal/efeitos da radiação , Encéfalo/efeitos da radiação , Animais , Anisotropia , Mapeamento Encefálico , Imagem de Tensor de Difusão , Relação Dose-Resposta à Radiação , Comportamento Exploratório/efeitos da radiação , Raios gama , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos A , Reconhecimento Psicológico/efeitos da radiação
12.
Neuroradiology ; 52(8): 759-65, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20405112

RESUMO

INTRODUCTION: The purpose of this study was to determine whether tract-specific diffusion tensor imaging measures in somatosensory and motor pathways correlate with clinical grades as defined using the Gross Motor Function Classification System (GMFCS) in cerebral palsy (CP) children. METHODS: Quantitative diffusion tensor tractography was performed on 39 patients with spastic quadriparesis (mean age = 8 years) and 14 age/sex-matched controls. All patients were graded on the basis of GMFCS scale into grade II (n = 12), grade IV (n = 22), and grade V (n = 5) CP and quantitative analysis reconstruction of somatosensory and motor tracts performed. RESULTS: Significant inverse correlation between clinical grade and fractional anisotropy (FA) was observed in both right and left motor and sensory tracts. A significant direct correlation of mean diffusivity values from both motor and sensory tracts was also observed with clinical grades. Successive decrease in FA values was observed in all tracts except for left motor tracts moving from age/sex-matched controls to grade V through grades II and IV. CONCLUSION: We conclude that white matter tracts from both the somatosensory and the motor cortex play an important role in the pathophysiology of motor disability in patients with CP.


Assuntos
Paralisia Cerebral/diagnóstico , Imagem de Difusão por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Córtex Motor/patologia , Fibras Nervosas Mielinizadas/patologia , Vias Neurais/patologia , Córtex Somatossensorial/patologia , Anisotropia , Atrofia , Córtex Cerebral/patologia , Paralisia Cerebral/classificação , Paralisia Cerebral/patologia , Paralisia Cerebral/fisiopatologia , Ventrículos Cerebrais/patologia , Criança , Pré-Escolar , Avaliação da Deficiência , Dominância Cerebral/fisiologia , Feminino , Humanos , Masculino , Córtex Motor/fisiopatologia , Fibras Nervosas Mielinizadas/fisiologia , Vias Neurais/fisiopatologia , Exame Neurológico , Tratos Piramidais/patologia , Valores de Referência , Software , Córtex Somatossensorial/fisiopatologia , Estatística como Assunto
13.
Neuroradiol J ; 33(2): 186-197, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31992126

RESUMO

AIM: In the present study, we aimed to characterise changes in functional brain networks in individuals who had sustained uncomplicated mild traumatic brain injury (mTBI). We assessed the progression of these changes into the chronic phase. We also attempted to explore how these changes influenced the severity of post-concussion symptoms as well as the cognitive profile of the patients. METHODS: A total of 65 patients were prospectively recruited for an advanced magnetic resonance imaging (MRI) scan within 7 days of sustaining mTBI. Of these, 25 were reassessed at 6 months post injury. Differences in functional brain networks were analysed between cases and age- and sex-matched healthy controls using independent component analysis of resting-state functional MRI. RESULTS: Our study revealed reduced functional connectivity in multiple networks, including the anterior default mode network, central executive network, somato-motor and auditory network in patients who had sustained mTBI. A negative correlation between network connectivity and severity of post-concussive symptoms was observed. Follow-up studies performed 6 months after injury revealed an increase in network connectivity, along with an improvement in the severity of post-concussion symptoms. Neurocognitive tests performed at this time point revealed a positive correlation between the functional connectivity and the test scores, along with a persistence of negative correlation between network connectivity and post-concussive symptom severity. CONCLUSION: Our results suggest that uncomplicated mTBI is associated with specific abnormalities in functional brain networks that evolve over time and may contribute to the severity of post-concussive symptoms and cognitive deficits.


Assuntos
Concussão Encefálica/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Rede Nervosa/diagnóstico por imagem , Síndrome Pós-Concussão/diagnóstico por imagem , Adulto , Feminino , Seguimentos , Neuroimagem Funcional , Humanos , Imageamento por Ressonância Magnética , Masculino , Índice de Gravidade de Doença , Adulto Jovem
14.
Dev Neurosci ; 31(6): 487-96, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19622880

RESUMO

Transient early cerebral laminar organization resulting from normal developmental events has been revealed in human beings through histology and imaging studies. DTI studies have postulated that the fractional anisotropy (FA)-based differentiation of different laminar structures reflects both differing cellular density over the glial fibers and fiber alignment in respective regions. The aim of this study was to correlate FA values in these transient zones with histology. Brain DTI was performed on 50 freshly aborted human fetuses with gestational ages (GA) ranging from 12 to 42 weeks. Regions of interest were placed on the cortical plate, subplate, intermediate and germinal matrix (GMx) zones of the frontal lobe to quantify FA values. Glial fibrillary acidic protein (GFAP), neurofilament (NF) and neuron-specific enolase (NSE) immunohistochemical analyses were performed for the cortical plate, intermediate zone and GMx. In the cortical plate, a significant positive correlation was observed between FA values and percentage area of GFAP expression in fetuses

Assuntos
Imagem de Tensor de Difusão/métodos , Lobo Frontal/embriologia , Feto Abortado , Anisotropia , Mapeamento Encefálico , Contagem de Células , Feminino , Desenvolvimento Fetal , Lobo Frontal/metabolismo , Idade Gestacional , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Imageamento por Ressonância Magnética , Masculino , Proteínas de Neurofilamentos/metabolismo , Fosfopiruvato Hidratase/metabolismo , Análise de Regressão
15.
Pediatr Res ; 66(6): 636-41, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19687778

RESUMO

Region of interest based morphometric diffusion tensor imaging analysis, has been used extensively for the assessment of age-related changes in human brain, is limited to two dimensions and does not reflect the whole fiber bundle; however, diffusion tensor tractography (DTT) offers an overall view of individual fiber bundle in three-dimensional spaces. Quantitative DTT was performed on 51 healthy subjects of pediatric age range and young adults to compare age-related fractional anisotropy (FA) changes in corpus callosum, sensory and motor pathways, limbic tracts [cingulum (CNG) and fornix (Fx)], and superior and inferior longitudinal fascicules. In corpus callosum, inferior longitudinal fascicules, limbic tracts (CNG and Fx), sensory pathways, and motor pathways, an initial sharp increase in FA was observed up to the age of 2 y followed by a gradual increase up to 21 y. In superior longitudinal fascicules, sharp increase in FA was observed up to 3 y followed by a gradual increase. The FA value of the left CNG (p = 0.01, sign test) was observed to be significantly greater than that of the right CNG. We conclude that white matter fiber tracts mature with age and can be assessed by using DTT that may greatly improve our understanding of the human brain development.


Assuntos
Encéfalo/crescimento & desenvolvimento , Imagem de Tensor de Difusão/métodos , Lateralidade Funcional/fisiologia , Vias Neurais/crescimento & desenvolvimento , Adolescente , Fatores Etários , Anisotropia , Encéfalo/anatomia & histologia , Criança , Pré-Escolar , Humanos , Lactente , Vias Neurais/anatomia & histologia , Adulto Jovem
16.
Neuroradiology ; 51(9): 567-76, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19421746

RESUMO

INTRODUCTION: In this study, diffusion tensor imaging (DTI) and glial fibrillary acidic protein (GFAP) immunohistochemical analysis in different cortical regions in fetal brains at different gestational age (GA) were performed. METHODS: DTI was performed on 50 freshly aborted fetal brains with GA ranging from 12 to 42 weeks to compare age-related fractional anisotropy (FA) changes in different cerebral cortical regions that include frontal, parietal, occipital, and temporal lobes at the level of thalami. GFAP immunostaining was performed and the percentage of GFAP-positive areas was quantified. RESULTS: The cortical FA values in the frontal lobe peaked at around 26 weeks of GA, occipital and temporal lobes at around 20 weeks, and parietal lobe at around 23 weeks. A significant, but modest, positive correlation (r = 0.31, p = 0.02) was observed between cortical FA values and percentage area of GFAP expression in cortical region around the time period during which the migrational events are at its peak, i.e., GA < or = 28 weeks for frontal cortical region and GA < or = 22 weeks for rest of the lobes. CONCLUSIONS: The DTI-derived FA quantification with its GFAP immunohistologic correlation in cortical regions of the various lobes of the cerebral hemispheres supports region-specific migrational and maturational events in human fetal brain.


Assuntos
Envelhecimento/patologia , Envelhecimento/fisiologia , Córtex Cerebral/anatomia & histologia , Córtex Cerebral/embriologia , Imagem de Difusão por Ressonância Magnética/métodos , Desenvolvimento Fetal , Feto/anatomia & histologia , Feminino , Humanos , Masculino
17.
Magn Reson Imaging ; 27(2): 214-21, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18687548

RESUMO

It has been previously hypothesized that the high fractional anisotropy (FA) values in leptomeningeal cortical subcortical white matter (LCSWM) regions of neonatal brain with bacterial meningitis is due to the presence of adhesion molecules in the subarachnoid space, which are responsible for adherence of inflammatory cells over the subarachnoid membrane. The aim of this study was to look for any relationship between FA values in LCSWM regions and various neuroinflammatory molecules (NMs) in cerebrospinal fluid (CSF) measured in neonates with bacterial meningitis. Diffusion tensor imaging was performed on 18 term neonates (median age, 10.5 days) having bacterial meningitis and 10 age-/sex-matched healthy controls. CSF enzyme-linked immunosorbent assay was performed to quantify NMs [soluble intracellular adhesion molecules (sICAM), tumor necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta)]. Significantly increased FA values were observed in LCSWM regions of the patients compared to controls. A significant positive correlation was observed between FA values in LCSWM regions and NMs [sICAM (r=0.67, P=.006), TNF-alpha (r=0.69, P=.005) and IL-1beta (r=0.82, P=.000)] in CSF of these patients. No difference in FA values (P=.99) in LCSWM regions was observed between patients with sterile (0.12+/-0.02) and culture-positive CSF study (0.12+/-0.02). FA may be used as noninvasive surrogate marker of NMs in neonatal meningitis in assessing therapeutic response in future.


Assuntos
Moléculas de Adesão Celular/líquido cefalorraquidiano , Córtex Cerebral/patologia , Imagem de Difusão por Ressonância Magnética/métodos , Meningites Bacterianas/líquido cefalorraquidiano , Anisotropia , Estudos de Casos e Controles , Meios de Contraste , Ensaio de Imunoadsorção Enzimática , Feminino , Gadolínio DTPA , Humanos , Recém-Nascido , Molécula 1 de Adesão Intercelular/líquido cefalorraquidiano , Interleucina-1beta/líquido cefalorraquidiano , Masculino , Meningites Bacterianas/microbiologia , Punção Espinal , Fator de Necrose Tumoral alfa/líquido cefalorraquidiano
18.
Acta Paediatr ; 98(9): 1426-32, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19485957

RESUMO

AIM: To compare changes in apparent diffusion coefficient (ADC) in neonatal meningitis using serial diffusion-weighted imaging (DWI). METHOD: Thirty neonates with meningitis and 12 age/sex-matched controls were studied using DWI. ADC was quantified by placing region of interest(s) on periventricular white matter during acute illness and again at 21 days. Three groups of patients were studied: those with normal findings on both conventional MRI and DWI, those with abnormal DWI only and those with abnormal conventional MRI as well as DWI. Neurodevelopment assessment was performed in controls and patients at 3 months using Indian adaptation of Bayley scales of infant development (BSID) kit. RESULTS: Patients with neonatal meningitis with normal imaging (n = 8) showed no significant difference in ADC compared to controls. Patients showing abnormality only on DWI (n = 10) and on both conventional magnetic resonance imaging (MRI) as well as DWI (n = 12) had significantly reduced ADC (p = 0.001) than controls at baseline study. Follow-up study showed no significant differences in ADC in controls compared to any patient group. Significantly reduced neurodevelopmental scores were observed in patient groups compared to controls. CONCLUSION: We conclude that quantitative ADC may detect meningitis-induced hypoxia early in brain parenchyma, which may be associated with abnormal motor and mental development.


Assuntos
Encéfalo/patologia , Imagem de Difusão por Ressonância Magnética , Hipóxia-Isquemia Encefálica/diagnóstico , Meningites Bacterianas/complicações , Análise de Variância , Água Corporal , Encéfalo/metabolismo , Estudos de Casos e Controles , Líquido Cefalorraquidiano/química , Citrobacter/isolamento & purificação , Deficiências do Desenvolvimento/etiologia , Difusão , Imagem de Difusão por Ressonância Magnética/métodos , Escherichia coli/isolamento & purificação , Feminino , Seguimentos , Humanos , Hipóxia-Isquemia Encefálica/etiologia , Recém-Nascido , Imageamento por Ressonância Magnética/métodos , Masculino , Meningites Bacterianas/microbiologia , Sistema Nervoso/crescimento & desenvolvimento , Sistema Nervoso/patologia , Streptococcus/isolamento & purificação
19.
Cerebellum ; 7(3): 392-400, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18581196

RESUMO

Age-dependent changes in the normal cerebral white matter have been reported; however, there is no study on normal cerebellar white matter maturation in developing brain using diffusion tensor imaging (DTI). We performed DTI in 21 children who had normal neurological assessment along with no evidence of any abnormality on imaging. The aim of this study was to compare the age-related changes in fractional anisotropy (FA) and mean diffusivity (MD) quantified from cerebral white matter (splenium and genu of the corpus callosum and posterior limb of the internal capsule) and cerebellar white matter (middle cerebellar peduncles, superior cerebellar peduncles, and inferior cerebellar peduncles) regions in healthy children ranging in age from birth to 132 months. Log-linear regression model showed best fit to describe the age-related changes in FA and MD both for cerebral and cerebellar white matter. In cerebral white matter, an initial sharp increase in FA was observed up to the age of 24 months followed by a gradual increase up to 132 months. In cerebellar white matter, sharp increase in FA was observed up to 36 months, which then followed a gradual increase. However, MD showed a sharp decrease in cerebral white matter up to 24 months followed by a more gradual decrease thereafter, while in cerebellar white matter after an initial decrease (6 months), it followed a stable pattern. This study provides normative database of brain white matter development from neonates to childhood. This quantitative information may be useful for assessing brain maturation in patients with developmental delay of the cerebral and cerebellar white matter.


Assuntos
Envelhecimento/fisiologia , Encéfalo/fisiologia , Cerebelo/fisiologia , Anisotropia , Encéfalo/crescimento & desenvolvimento , Cerebelo/crescimento & desenvolvimento , Criança , Pré-Escolar , Corpo Caloso/crescimento & desenvolvimento , Corpo Caloso/fisiologia , Imagem de Difusão por Ressonância Magnética/métodos , Seguimentos , Humanos , Lactente , Imageamento por Ressonância Magnética , Valores de Referência
20.
Int J Dev Neurosci ; 26(7): 705-11, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18687396

RESUMO

Diffusion tensor imaging was performed on 24 freshly aborted human fetuses with gestational age ranging from 20 to 37 weeks to observe age-related fractional anisotropy changes in cerebellar cortex and cerebellar white matter. Quantitative immunohistochemical analysis was performed for glial fibrillary acidic protein in each fetus molecular layer of cerebellar cortex and myelin basic protein expression was quantified in myelinated areas of the middle cerebellar peduncles. The cerebellar cortical fractional anisotropy reached its peak value at 28 weeks, and then decreased gradually until 37 weeks. The time course of glial fibrillary acidic protein expression paralleled that of fractional anisotropy in the cerebellar cortex from 20 weeks of gestation upto the gestational age at which the fractional anisotropy reached its peak value (28 weeks). In the middle cerebellar peduncles, the fractional anisotropy increased continuously upto 37 weeks of gestational age and showed a significant positive correlation with myelin basic protein immunostained fibers. The fractional anisotropy quantification can be used to assess the migrational and maturation changes during the development of the human fetal cerebellum supported by the immunohistochemical analysis.


Assuntos
Mapeamento Encefálico/métodos , Cerebelo/embriologia , Imagem de Difusão por Ressonância Magnética/métodos , Fibras Nervosas Mielinizadas/ultraestrutura , Envelhecimento/fisiologia , Anisotropia , Biomarcadores , Movimento Celular/fisiologia , Cerebelo/fisiologia , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Imuno-Histoquímica , Masculino , Proteína Básica da Mielina/metabolismo , Bainha de Mielina/metabolismo , Fibras Nervosas Mielinizadas/fisiologia , Neurogênese/fisiologia , Organogênese/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA