Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Eur J Neurosci ; 60(4): 4409-4420, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38858102

RESUMO

Although the aetio-pathogenesis of inflammatory bowel diseases (IBD) is not entirely clear, the interaction between genetic and adverse environmental factors may induce an intestinal dysbiosis, resulting in chronic inflammation having effects on the large-scale brain network. Here, we hypothesized inflammation-related changes in brain topology of IBD patients, regardless of the clinical form [ulcerative colitis (UC) or Crohn's disease (CD)]. To test this hypothesis, we analysed source-reconstructed magnetoencephalography (MEG) signals in 25 IBD patients (15 males, 10 females; mean age ± SD, 42.28 ± 13.15; mean education ± SD, 14.36 ± 3.58) and 28 healthy controls (HC) (16 males, 12 females; mean age ± SD, 45.18 ± 12.26; mean education ± SD, 16.25 ± 2.59), evaluating the brain topology. The betweenness centrality (BC) of the left hippocampus was higher in patients as compared with controls, in the gamma frequency band. It indicates how much a brain region is involved in the flow of information through the brain network. Furthermore, the comparison among UC, CD and HC showed statistically significant differences between UC and HC and between CD and HC, but not between the two clinical forms. Our results demonstrated that these topological changes were not dependent on the specific clinical form, but due to the inflammatory process itself. Broader future studies involving panels of inflammatory factors and metabolomic analyses on biological samples could help to monitor the brain involvement in IBD and to clarify the clinical impact.


Assuntos
Encéfalo , Magnetoencefalografia , Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Encéfalo/fisiopatologia , Doenças Inflamatórias Intestinais/fisiopatologia , Rede Nervosa/fisiopatologia , Doença de Crohn/fisiopatologia , Doença de Crohn/patologia , Colite Ulcerativa/fisiopatologia
2.
Sensors (Basel) ; 24(7)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38610512

RESUMO

This study examined the stability of the functional connectome (FC) over time using fingerprint analysis in healthy subjects. Additionally, it investigated how a specific stressor, namely sleep deprivation, affects individuals' differentiation. To this aim, 23 healthy young adults underwent magnetoencephalography (MEG) recording at three equally spaced time points within 24 h: 9 a.m., 9 p.m., and 9 a.m. of the following day after a night of sleep deprivation. The findings indicate that the differentiation was stable from morning to evening in all frequency bands, except in the delta band. However, after a night of sleep deprivation, the stability of the FCs was reduced. Consistent with this observation, the reduced differentiation following sleep deprivation was found to be negatively correlated with the effort perceived by participants in completing the cognitive task during sleep deprivation. This correlation suggests that individuals with less stable connectomes following sleep deprivation experienced greater difficulty in performing cognitive tasks, reflecting increased effort.


Assuntos
Magnetoencefalografia , Privação do Sono , Adulto Jovem , Humanos , Encéfalo , Nível de Saúde , Voluntários Saudáveis
3.
Neuroimage ; 277: 120260, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37392807

RESUMO

Subject differentiation bears the possibility to individualize brain analyses. However, the nature of the processes generating subject-specific features remains unknown. Most of the current literature uses techniques that assume stationarity (e.g., Pearson's correlation), which might fail to capture the non-linear nature of brain activity. We hypothesize that non-linear perturbations (defined as neuronal avalanches in the context of critical dynamics) spread across the brain and carry subject-specific information, contributing the most to differentiability. To test this hypothesis, we compute the avalanche transition matrix (ATM) from source-reconstructed magnetoencephalographic data, as to characterize subject-specific fast dynamics. We perform differentiability analysis based on the ATMs, and compare the performance to that obtained using Pearson's correlation (which assumes stationarity). We demonstrate that selecting the moments and places where neuronal avalanches spread improves differentiation (P < 0.0001, permutation testing), despite the fact that most of the data (i.e., the linear part) are discarded. Our results show that the non-linear part of the brain signals carries most of the subject-specific information, thereby clarifying the nature of the processes that underlie individual differentiation. Borrowing from statistical mechanics, we provide a principled way to link emergent large-scale personalized activations to non-observable, microscopic processes.


Assuntos
Encéfalo , Modelos Neurológicos , Humanos , Encéfalo/fisiologia , Magnetoencefalografia , Mapeamento Encefálico , Neurônios/fisiologia
4.
Hum Brain Mapp ; 44(3): 1239-1250, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36413043

RESUMO

The clinical connectome fingerprint (CCF) was recently introduced as a way to assess brain dynamics. It is an approach able to recognize individuals, based on the brain network. It showed its applicability providing network features used to predict the cognitive decline in preclinical Alzheimer's disease. In this article, we explore the performance of CCF in 47 Parkinson's disease (PD) patients and 47 healthy controls, under the hypothesis that patients would show reduced identifiability as compared to controls, and that such reduction could be used to predict motor impairment. We used source-reconstructed magnetoencephalography signals to build two functional connectomes for 47 patients with PD and 47 healthy controls. Then, exploiting the two connectomes per individual, we investigated the identifiability characteristics of each subject in each group. We observed reduced identifiability in patients compared to healthy individuals in the beta band. Furthermore, we found that the reduction in identifiability was proportional to the motor impairment, assessed through the Unified Parkinson's Disease Rating Scale, and, interestingly, able to predict it (at the subject level), through a cross-validated regression model. Along with previous evidence, this article shows that CCF captures disrupted dynamics in neurodegenerative diseases and is particularly effective in predicting motor clinical impairment in PD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doença de Parkinson , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Magnetoencefalografia , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/etiologia
5.
Neurol Sci ; 43(2): 1025-1034, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34244891

RESUMO

Sleep is a fundamental physiological process necessary for efficient cognitive functioning especially in relation to memory consolidation and executive functions, such as attentional and switching abilities. The lack of sleep strongly alters the connectivity of some resting-state networks, such as default mode network and attentional network. In this study, by means of magnetoencephalography (MEG) and specific cognitive tasks, we investigated how brain topology and cognitive functioning are affected by 24 h of sleep deprivation (SD). Thirty-two young men underwent resting-state MEG recording and evaluated in letter cancellation task (LCT) and task switching (TS) before and after SD. Results showed a worsening in the accuracy and speed of execution in the LCT and a reduction of reaction times in the TS, evidencing thus a worsening of attentional but not of switching abilities. Moreover, we observed that 24 h of SD induced large-scale rearrangements in the functional network. These findings evidence that 24 h of SD is able to alter brain connectivity and selectively affects cognitive domains which are under the control of different brain networks.


Assuntos
Função Executiva , Privação do Sono , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Humanos , Imageamento por Ressonância Magnética , Masculino
6.
Scand J Psychol ; 63(5): 495-503, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35674278

RESUMO

Personality neuroscience is focusing on the correlation between individual differences and the efficiency of large-scale networks from the perspective of the brain as an interconnected network. A suitable technique to explore this relationship is the magnetoencephalography (MEG), but not many MEG studies are aimed at investigating topological properties correlated to personality traits. By using MEG, the present study aims to evaluate how individual differences described in Cloninger's psychobiological model are correlated with specific cerebral structures. Fifty healthy individuals (20 males, 30 females, mean age: 27.4 ± 4.8 years) underwent Temperament and Character Inventory examination and MEG recording during a resting state condition. High harm avoidance scores were associated with a reduced centrality of the left caudate nucleus and this negative correlation was maintained in females when we analyzed gender differences. Our data suggest that the caudate nucleus plays a key role in adaptive behavior and could be a critical node in insular salience network. The clear difference between males and females allows us to suggest that topological organization correlated to personality is highly dependent on gender. Our findings provide new insights to evaluate the mutual influences of topological and functional connectivity in neural communication efficiency and disruption as biomarkers of psychopathological traits.


Assuntos
Caráter , Magnetoencefalografia , Adulto , Encéfalo , Feminino , Humanos , Masculino , Personalidade , Inventário de Personalidade , Temperamento , Adulto Jovem
7.
Neuroimage ; 238: 118253, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34116156

RESUMO

Brain connectome fingerprinting is rapidly rising as a novel influential field in brain network analysis. Yet, it is still unclear whether connectivity fingerprints could be effectively used for mapping and predicting disease progression from human brain data. We hypothesize that dysregulation of brain activity in disease would reflect in worse subject identification. We propose a novel framework, Clinical Connectome Fingerprinting, to detect individual connectome features from clinical populations. We show that "clinical fingerprints" can map individual variations between elderly healthy subjects and patients with mild cognitive impairment in functional connectomes extracted from magnetoencephalography data. We find that identifiability is reduced in patients as compared to controls, and show that these connectivity features are predictive of the individual Mini-Mental State Examination (MMSE) score in patients. We hope that the proposed methodology can help in bridging the gap between connectivity features and biomarkers of brain dysfunction in large-scale brain networks.


Assuntos
Encéfalo/fisiopatologia , Cognição/fisiologia , Disfunção Cognitiva/fisiopatologia , Conectoma , Rede Nervosa/fisiopatologia , Disfunção Cognitiva/psicologia , Humanos , Magnetoencefalografia , Testes Neuropsicológicos
8.
J Neurosci Res ; 99(9): 2271-2286, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34110041

RESUMO

The menstrual cycle (MC) is a sex hormone-related phenomenon that repeats itself cyclically during the woman's reproductive life. In this explorative study, we hypothesized that coordinated variations of multiple sex hormones may affect the large-scale organization of the brain functional network and that, in turn, such changes might have psychological correlates, even in the absence of overt clinical signs of anxiety and/or depression. To test our hypothesis, we investigated longitudinally, across the MC, the relationship between the sex hormones and both brain network and psychological changes. We enrolled 24 naturally cycling women and, at the early-follicular, peri-ovulatory, and mid-luteal phases of the MC, we performed: (a) sex hormone dosage, (b) magnetoencephalography recording to study the brain network topology, and (c) psychological questionnaires to quantify anxiety, depression, self-esteem, and well-being. We showed that during the peri-ovulatory phase, in the alpha band, the leaf fraction and the tree hierarchy of the brain network were reduced, while the betweenness centrality (BC) of the right posterior cingulate gyrus (rPCG) was increased. Furthermore, the increase in BC was predicted by estradiol levels. Moreover, during the luteal phase, the variation of estradiol correlated positively with the variations of both the topological change and environmental mastery dimension of the well-being test, which, in turn, was related to the increase in the BC of rPCG. Our results highlight the effects of sex hormones on the large-scale brain network organization as well as on their possible relationship with the psychological state across the MC. Moreover, the fact that physiological changes in the brain topology occur throughout the MC has widespread implications for neuroimaging studies.


Assuntos
Encéfalo/diagnóstico por imagem , Emoções , Estradiol/sangue , Ciclo Menstrual/sangue , Ciclo Menstrual/psicologia , Rede Nervosa/diagnóstico por imagem , Adulto , Encéfalo/metabolismo , Feminino , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética/métodos , Magnetoencefalografia/métodos , Rede Nervosa/metabolismo , Ultrassonografia de Intervenção/métodos
9.
Sci Rep ; 14(1): 14039, 2024 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890363

RESUMO

The epilepsy diagnosis still represents a complex process, with misdiagnosis reaching 40%. We aimed at building an automatable workflow, helping the clinicians in the diagnosis of temporal lobe epilepsy (TLE). We hypothesized that neuronal avalanches (NA) represent a feature better encapsulating the rich brain dynamics compared to classically used functional connectivity measures (Imaginary Coherence; ImCoh). We analyzed large-scale activation bursts (NA) from source estimation of resting-state electroencephalography. Using a support vector machine, we reached a classification accuracy of TLE versus controls of 0.86 ± 0.08 (SD) and an area under the curve of 0.93 ± 0.07. The use of NA features increase by around 16% the accuracy of diagnosis prediction compared to ImCoh. Classification accuracy increased with larger signal duration, reaching a plateau at 5 min of recording. To summarize, NA represents an interpretable feature for an automated epilepsy identification, being related with intrinsic neuronal timescales of pathology-relevant regions.


Assuntos
Encéfalo , Eletroencefalografia , Epilepsia do Lobo Temporal , Neurônios , Epilepsia do Lobo Temporal/diagnóstico , Epilepsia do Lobo Temporal/fisiopatologia , Humanos , Eletroencefalografia/métodos , Masculino , Encéfalo/fisiopatologia , Encéfalo/diagnóstico por imagem , Adulto , Neurônios/fisiologia , Feminino , Pessoa de Meia-Idade , Máquina de Vetores de Suporte , Adulto Jovem
10.
Clin Neurophysiol ; 163: 14-21, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38663099

RESUMO

OBJECTIVE: To test the hypothesis that patients affected by Amyotrophic Lateral Sclerosis (ALS) show an altered spatio-temporal spreading of neuronal avalanches in the brain, and that this may related to the clinical picture. METHODS: We obtained the source-reconstructed magnetoencephalography (MEG) signals from thirty-six ALS patients and forty-two healthy controls. Then, we used the construct of the avalanche transition matrix (ATM) and the corresponding network parameter nodal strength to quantify the changes in each region, since this parameter provides key information about which brain regions are mostly involved in the spreading avalanches. RESULTS: ALS patients presented higher values of the nodal strength in both cortical and sub-cortical brain areas. This parameter correlated directly with disease duration. CONCLUSIONS: In this work, we provide a deeper characterization of neuronal avalanches propagation in ALS, describing their spatio-temporal trajectories and identifying the brain regions most likely to be involved in the process. This makes it possible to recognize the brain areas that take part in the pathogenic mechanisms of ALS. Furthermore, the nodal strength of the involved regions correlates directly with disease duration. SIGNIFICANCE: Our results corroborate the clinical relevance of aperiodic, fast large-scale brain activity as a biomarker of microscopic changes induced by neurophysiological processes.


Assuntos
Esclerose Lateral Amiotrófica , Magnetoencefalografia , Humanos , Esclerose Lateral Amiotrófica/fisiopatologia , Esclerose Lateral Amiotrófica/diagnóstico , Feminino , Masculino , Pessoa de Meia-Idade , Magnetoencefalografia/métodos , Idoso , Adulto , Ondas Encefálicas/fisiologia , Encéfalo/fisiopatologia
11.
Heliyon ; 10(15): e35751, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39170156

RESUMO

The analysis of gait kinematics requires to encode and collapse multidimensional information from multiple anatomical elements. In this study, we address this issue by analyzing the joints' coordination during gait, borrowing from the framework of network theory. We recruited twenty-three patients with Parkinson's disease and twenty-three matched controls that were recorded during linear gait using a stereophotogrammetric motion analysis system. The three-dimensional angular velocity of the joints was used to build a kinematic network for each participant, and both global (average whole-body synchronization) and nodal (individual joint synchronization, i.e., nodal strength) were extracted. By comparing the two groups, the results showed lower coordination in patients, both at global and nodal levels (neck, shoulders, elbows, and hips). Furthermore, the nodal strength of the left elbow and right hip in the patients, as well as the average joints' nodal strength were significantly correlated with the clinical motor condition and were predictive of it. Our study highlights the importance of integrating whole-body information in kinematic analyses and the advantages of using network theory. Finally, the identification of altered network properties of specific joints, and their relationship with the motor impairment in the patients, suggests a potential clinical relevance for our approach.

12.
Sci Rep ; 14(1): 1913, 2024 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-38253728

RESUMO

Three-dimensional motion analysis represents a quantitative approach to assess spatio-temporal and kinematic changes in health and disease. However, these parameters provide only segmental information, discarding minor changes of complex whole body kinematics characterizing physiological and/or pathological conditions. We aimed to assess how levodopa intake affects the whole body, analyzing the kinematic interactions during gait in Parkinson's disease (PD) through network theory which assess the relationships between elements of a system. To this end, we analysed gait data of 23 people with PD applying network theory to the acceleration kinematic data of 21 markers placed on participants' body landmarks. We obtained a matrix of kinematic interactions (i.e., the kinectome) for each participant, before and after the levodopa intake, we performed a topological analysis to evaluate the large-scale interactions among body elements, and a multilinear regression analysis to verify whether the kinectome's topology could predict the clinical variations induced by levodopa. We found that, following levodopa intake, patients with PD showed less trunk and head synchronization (p-head = 0.048; p-7th cervical vertebrae = 0.032; p-10th thoracic vertebrae = 0.006) and an improved upper-lower limbs synchronization (elbows right, p = 0.002; left, p = 0.005), (wrists right, p = 0.003; left, p = 0.002; knees right, p = 0.003; left, p = 0.039) proportional to the UPDRS-III scores. These results may be attributable to the reduction of rigidity, following pharmacological treatment.


Assuntos
Levodopa , Doença de Parkinson , Humanos , Levodopa/farmacologia , Levodopa/uso terapêutico , Fenômenos Biomecânicos , Dopamina , Extremidade Superior , Aceleração , Doença de Parkinson/tratamento farmacológico
13.
Sci Rep ; 14(1): 1976, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38263324

RESUMO

The brain operates in a flexible dynamic regime, generating complex patterns of activity (i.e. neuronal avalanches). This study aimed at describing how brain dynamics change according to menstrual cycle (MC) phases. Brain activation patterns were estimated from resting-state magnetoencephalography (MEG) scans, acquired from women at early follicular (T1), peri-ovulatory (T2) and mid-luteal (T3) phases of the MC. We investigated the functional repertoire (number of brain configurations based on fast high-amplitude bursts of the brain signals) and the region-specific influence on large-scale dynamics across the MC. Finally, we assessed the relationship between sex hormones and changes in brain dynamics. A significantly larger number of visited configurations in T2 as compared to T1 was specifically observed in the beta frequency band. No relationship between changes in brain dynamics and sex hormones was evident. Finally, we showed that the left posterior cingulate gyrus and the right insula were recruited more often in the functional repertoire during T2 as compared to T1, while the right pallidum was more often part of the functional repertoires during T1 as compared to T2. In summary, we showed hormone-independent increased flexibility of the brain dynamics during the ovulatory phase. Moreover, we demonstrated that several specific brain regions play a key role in determining this change.


Assuntos
Fase Folicular , Ciclo Menstrual , Feminino , Humanos , Encéfalo , Magnetoencefalografia , Hormônios Esteroides Gonadais
14.
Brain Commun ; 6(2): fcae112, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38585670

RESUMO

Large-scale brain activity has long been investigated under the erroneous assumption of stationarity. Nowadays, we know that resting-state functional connectivity is characterized by aperiodic, scale-free bursts of activity (i.e. neuronal avalanches) that intermittently recruit different brain regions. These different patterns of activity represent a measure of brain flexibility, whose reduction has been found to predict clinical impairment in multiple neurodegenerative diseases such as Parkinson's disease, amyotrophic lateral sclerosis and Alzheimer's disease. Brain flexibility has been recently found increased in multiple sclerosis, but its relationship with clinical disability remains elusive. Also, potential differences in brain dynamics according to the multiple sclerosis clinical phenotypes remain unexplored so far. We performed a brain dynamics study quantifying brain flexibility utilizing the 'functional repertoire' (i.e. the number of configurations of active brain areas) through source reconstruction of magnetoencephalography signals in a cohort of 25 multiple sclerosis patients (10 relapsing-remitting multiple sclerosis and 15 secondary progressive multiple sclerosis) and 25 healthy controls. Multiple sclerosis patients showed a greater number of unique reconfigurations at fast time scales as compared with healthy controls. This difference was mainly driven by the relapsing-remitting multiple sclerosis phenotype, whereas no significant differences in brain dynamics were found between secondary progressive multiple sclerosis and healthy controls. Brain flexibility also showed a different predictive power on clinical disability according to the multiple sclerosis type. For the first time, we investigated brain dynamics in multiple sclerosis patients through high temporal resolution techniques, unveiling differences in brain flexibility according to the multiple sclerosis phenotype and its relationship with clinical disability.

15.
Brain Sci ; 13(10)2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37891768

RESUMO

Recent evidence has shown a relationship between physical exercise (PE) and cognitive functioning. However, it is unknown if unimodal and multimodal modalities of PE affect cognitive abilities in different ways. To fill this gap, we analyzed the effects of unimodal PE (running) and multimodal PE (Tai Chi) on specific cognitive abilities. A sample of 33 participants (mean age = 52.6 ± 7.2) divided into eleven runners, eleven Tai Chi practitioners, and eleven age-matched sedentary individuals were subjected to a neuropsychological tests battery to assess shifting and problem solving abilities (Rule Shift Cards, BADS-RS, and Key Search tasks), verbal fluency (semantic and phonemic verbal fluency tasks), verbal memory (Rey's 15 words test), visuo-spatial working memory (Corsi test), and global cognitive functioning (clock-drawing test). The results showed significantly higher BADS-RS scores in runners and Tai Chi practitioners in comparison to the sedentary participants, thus evidencing improved shifting abilities for active individuals. Interestingly, post hoc analysis showed significantly higher span scores of Corsi test only in Tai Chi practitioners as compared to sedentary participants, suggesting how multimodal PE facilitates the visuo-spatial working memory processes. Although preliminary, our descriptive study indicates that the type of PE could modulate specific cognitive domains, even if the practice of motor activity favors a global cognitive improvement.

16.
Ann Biomed Eng ; 51(4): 643-659, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36701031

RESUMO

Research on human posture and balance control has grown in recent years, leading to continued advances in their understanding. The ability to maintain balance is attributed to the interplay of the visual, vestibular, and somatosensory systems, although an important role is also played by the auditory system. The lack or deficit in any of these systems leads to a reduced stability that may be counterbalanced by the integration of all the remaining sensory information. Auditory and vibratory stimulation have been found to be useful to enhance balance alongside daily activities either in healthy or pathological subjects; nevertheless, while widely investigated, the literature relating to these approaches is still fragmented. This review aims at addressing this by collecting, organising, and discussing all the literature to date on the effects of the various acoustic and vibratory stimulation techniques available on static upright posture in healthy subjects. In addition, this review intends to provide a solid and comprehensive starting point for all the researchers interested in these research areas. A systematic search of the literature was performed and a total of 33 articles (24 on vibratory stimulation and 9 on acoustic stimulation) were included in our analysis. For all articles, several elements were highlighted including: the study sample, the characteristics of the stimulations, the recording instruments, the experimental protocols, and outcomes. Overall, both stimulations analysed were found to have a positive effect on balance but more research is needed to align those alternative approaches to the traditional ones.


Assuntos
Equilíbrio Postural , Postura , Humanos , Estimulação Acústica , Equilíbrio Postural/fisiologia , Postura/fisiologia , Posição Ortostática , Vibração
17.
Neurobiol Aging ; 132: 36-46, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37717553

RESUMO

Functional connectivity has been used as a framework to investigate widespread brain interactions underlying cognitive deficits in mild cognitive impairment (MCI). However, many functional connectivity metrics focus on the average of the periodic activities, disregarding the aperiodic bursts of activity (i.e., the neuronal avalanches) characterizing the large-scale dynamic activities of the brain. Here, we apply the recently described avalanche transition matrix framework to source-reconstructed magnetoencephalography signals in a cohort of 32 MCI patients and 32 healthy controls to describe the spatio-temporal features of neuronal avalanches and explore their topological properties. Our results showed that MCI patients showed a more centralized network (as assessed by higher values of the degree divergence and leaf fraction) as compared to healthy controls. Furthermore, we found that the degree divergence (in the theta band) was predictive of hippocampal memory impairment. These findings highlight the role of the changes of aperiodic bursts in clinical conditions and may contribute to a more thorough phenotypical assessment of patients.


Assuntos
Transtornos Cognitivos , Disfunção Cognitiva , Humanos , Magnetoencefalografia , Encéfalo/diagnóstico por imagem , Disfunção Cognitiva/psicologia , Transtornos da Memória
18.
Neuroimage Clin ; 39: 103464, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37399676

RESUMO

BACKGROUND: Brain connectome fingerprinting is progressively gaining ground in the field of brain network analysis. It represents a valid approach in assessing the subject-specific connectivity and, according to recent studies, in predicting clinical impairment in some neurodegenerative diseases. Nevertheless, its performance, and clinical utility, in the Multiple Sclerosis (MS) field has not yet been investigated. METHODS: We conducted the Clinical Connectome Fingerprint (CCF) analysis on source-reconstructed magnetoencephalography signals in a cohort of 50 subjects: twenty-five MS patients and twenty-five healthy controls. RESULTS: All the parameters of identifiability, in the alpha band, were reduced in patients as compared to controls. These results implied a lower similarity between functional connectomes (FCs) of the same patient and a reduced homogeneity among FCs in the MS group. We also demonstrated that in MS patients, reduced identifiability was able to predict, fatigue level (assessed by the Fatigue Severity Scale). CONCLUSION: These results confirm the clinical usefulness of the CCF in both identifying MS patients and predicting clinical impairment. We hope that the present study provides future prospects for treatment personalization on the basis of individual brain connectome.


Assuntos
Conectoma , Esclerose Múltipla , Humanos , Conectoma/métodos , Esclerose Múltipla/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Fadiga/diagnóstico por imagem , Fadiga/etiologia
19.
PLoS One ; 17(5): e0268392, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35551300

RESUMO

The synthetic indices are widely used to describe balance and stability during gait. Some of these are employed to describe the gait features in Parkinson's disease (PD). However, the results are sometimes inconsistent, and the same indices are rarely used to compare the individuals affected by PD before and after levodopa intake (OFF and ON condition, respectively). Our aim was to investigate which synthetic measure among Harmonic Ratio, Jerk Ratio, Golden Ratio and Trunk Displacement Index is representative of gait stability and harmony, and which of these are more sensitive to the variations between OFF and ON condition. We found that all indices, except the Jerk Ratio, significantly improve after levodopa. Only the improvement of the Trunk Displacement Index showed a direct correlation with the motor improvement measured through the clinical scale UPDRS-III (Unified Parkinson's Disease Rating Scale-part III). In conclusion, we suggest that the synthetic indices can be useful to detect motor changes induced by, but not all of them clearly correlate with the clinical changes achieved with the levodopa administration. In our analysis, only the Trunk Displacement Index was able to show a clear relationship with the PD clinical motor improvement.


Assuntos
Discinesias , Doença de Parkinson , Antiparkinsonianos/farmacologia , Antiparkinsonianos/uso terapêutico , Fenômenos Biomecânicos , Marcha , Humanos , Levodopa/farmacologia , Levodopa/uso terapêutico , Doença de Parkinson/diagnóstico , Doença de Parkinson/tratamento farmacológico
20.
Ann N Y Acad Sci ; 1516(1): 247-261, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35838306

RESUMO

Human voluntary movement stems from the coordinated activations in space and time of many musculoskeletal segments. However, the current methodological approaches to study human movement are still limited to the evaluation of the synergies among a few body elements. Network science can be a useful approach to describe movement as a whole and to extract features that are relevant to understanding both its complex physiology and the pathophysiology of movement disorders. Here, we propose to represent human movement as a network (that we named the kinectome), where nodes represent body points, and edges are defined as the correlations of the accelerations between each pair of them. We applied this framework to healthy individuals and patients with Parkinson's disease, observing that the patients' kinectomes display less symmetrical patterns as compared to healthy controls. Furthermore, we used the kinectomes to successfully identify both healthy and diseased subjects using short gait recordings. Finally, we highlighted topological features that predict the individual clinical impairment in patients. Our results define a novel approach to study human movement. While deceptively simple, this approach is well-grounded, and represents a powerful tool that may be applied to a wide spectrum of frameworks.


Assuntos
Marcha , Doença de Parkinson , Aceleração , Fenômenos Biomecânicos , Marcha/fisiologia , Humanos , Movimento/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA