Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Bioinformatics ; 37(17): 2753-2754, 2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-33543751

RESUMO

MOTIVATION: The majority of genome analysis tools and pipelines require data to be decrypted for access. This potentially leaves sensitive genetic data exposed, either because the unencrypted data is not removed after analysis, or because the data leaves traces on the permanent storage medium. RESULTS: : We defined a file container specification enabling direct byte-level compatible random access to encrypted genetic data stored in community standards such as SAM/BAM/CRAM/VCF/BCF. By standardizing this format, we show how it can be added as a native file format to genomic libraries, enabling direct analysis of encrypted data without the need to create a decrypted copy. AVAILABILITY AND IMPLEMENTATION: The Crypt4GH specification can be found at: http://samtools.github.io/hts-specs/crypt4gh.pdf. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

2.
J Med Internet Res ; 23(2): e25120, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33629963

RESUMO

Multisite medical data sharing is critical in modern clinical practice and medical research. The challenge is to conduct data sharing that preserves individual privacy and data utility. The shortcomings of traditional privacy-enhancing technologies mean that institutions rely upon bespoke data sharing contracts. The lengthy process and administration induced by these contracts increases the inefficiency of data sharing and may disincentivize important clinical treatment and medical research. This paper provides a synthesis between 2 novel advanced privacy-enhancing technologies-homomorphic encryption and secure multiparty computation (defined together as multiparty homomorphic encryption). These privacy-enhancing technologies provide a mathematical guarantee of privacy, with multiparty homomorphic encryption providing a performance advantage over separately using homomorphic encryption or secure multiparty computation. We argue multiparty homomorphic encryption fulfills legal requirements for medical data sharing under the European Union's General Data Protection Regulation which has set a global benchmark for data protection. Specifically, the data processed and shared using multiparty homomorphic encryption can be considered anonymized data. We explain how multiparty homomorphic encryption can reduce the reliance upon customized contractual measures between institutions. The proposed approach can accelerate the pace of medical research while offering additional incentives for health care and research institutes to employ common data interoperability standards.


Assuntos
Segurança Computacional/ética , Disseminação de Informação/ética , Privacidade/legislação & jurisprudência , Tecnologia/métodos , Humanos
4.
Proc IEEE Symp Secur Priv ; 2023: 1908-1925, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-38665901

RESUMO

Principal component analysis (PCA) is an essential algorithm for dimensionality reduction in many data science domains. We address the problem of performing a federated PCA on private data distributed among multiple data providers while ensuring data confidentiality. Our solution, SF-PCA, is an end-to-end secure system that preserves the confidentiality of both the original data and all intermediate results in a passive-adversary model with up to all-but-one colluding parties. SF-PCA jointly leverages multiparty homomorphic encryption, interactive protocols, and edge computing to efficiently interleave computations on local cleartext data with operations on collectively encrypted data. SF-PCA obtains results as accurate as non-secure centralized solutions, independently of the data distribution among the parties. It scales linearly or better with the dataset dimensions and with the number of data providers. SF-PCA is more precise than existing approaches that approximate the solution by combining local analysis results, and between 3x and 250x faster than privacy-preserving alternatives based solely on secure multiparty computation or homomorphic encryption. Our work demonstrates the practical applicability of secure and federated PCA on private distributed datasets.

5.
Patterns (N Y) ; 3(5): 100487, 2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35607628

RESUMO

Training accurate and robust machine learning models requires a large amount of data that is usually scattered across data silos. Sharing or centralizing the data of different healthcare institutions is, however, unfeasible or prohibitively difficult due to privacy regulations. In this work, we address this problem by using a privacy-preserving federated learning-based approach, PriCell, for complex models such as convolutional neural networks. PriCell relies on multiparty homomorphic encryption and enables the collaborative training of encrypted neural networks with multiple healthcare institutions. We preserve the confidentiality of each institutions' input data, of any intermediate values, and of the trained model parameters. We efficiently replicate the training of a published state-of-the-art convolutional neural network architecture in a decentralized and privacy-preserving manner. Our solution achieves an accuracy comparable with the one obtained with the centralized non-secure solution. PriCell guarantees patient privacy and ensures data utility for efficient multi-center studies involving complex healthcare data.

6.
Proc Priv Enhanc Technol ; 2022(3): 732-753, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212774

RESUMO

Providing provenance in scientific workflows is essential for reproducibility and auditability purposes. In this work, we propose a framework that verifies the correctness of the aggregate statistics obtained as a result of a genome-wide association study (GWAS) conducted by a researcher while protecting individuals' privacy in the researcher's dataset. In GWAS, the goal of the researcher is to identify highly associated point mutations (variants) with a given phenotype. The researcher publishes the workflow of the conducted study, its output, and associated metadata. They keep the research dataset private while providing, as part of the metadata, a partial noisy dataset (that achieves local differential privacy). To check the correctness of the workflow output, a verifier makes use of the workflow, its metadata, and results of another GWAS (conducted using publicly available datasets) to distinguish between correct statistics and incorrect ones. For evaluation, we use real genomic data and show that the correctness of the workflow output can be verified with high accuracy even when the aggregate statistics of a small number of variants are provided. We also quantify the privacy leakage due to the provided workflow and its associated metadata and show that the additional privacy risk due to the provided metadata does not increase the existing privacy risk due to sharing of the research results. Thus, our results show that the workflow output (i.e., research results) can be verified with high confidence in a privacy-preserving way. We believe that this work will be a valuable step towards providing provenance in a privacy-preserving way while providing guarantees to the users about the correctness of the results.

7.
Nat Commun ; 12(1): 5910, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34635645

RESUMO

Using real-world evidence in biomedical research, an indispensable complement to clinical trials, requires access to large quantities of patient data that are typically held separately by multiple healthcare institutions. We propose FAMHE, a novel federated analytics system that, based on multiparty homomorphic encryption (MHE), enables privacy-preserving analyses of distributed datasets by yielding highly accurate results without revealing any intermediate data. We demonstrate the applicability of FAMHE to essential biomedical analysis tasks, including Kaplan-Meier survival analysis in oncology and genome-wide association studies in medical genetics. Using our system, we accurately and efficiently reproduce two published centralized studies in a federated setting, enabling biomedical insights that are not possible from individual institutions alone. Our work represents a necessary key step towards overcoming the privacy hurdle in enabling multi-centric scientific collaborations.


Assuntos
Medicina de Precisão , Privacidade , Algoritmos , Segurança Computacional , Atenção à Saúde , Estudo de Associação Genômica Ampla , Humanos , Estimativa de Kaplan-Meier , Análise de Sobrevida
8.
Nat Comput Sci ; 1(3): 192-198, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38183193

RESUMO

The growing number of health-data breaches, the use of genomic databases for law enforcement purposes and the lack of transparency of personal genomics companies are raising unprecedented privacy concerns. To enable a secure exploration of genomic datasets with controlled and transparent data access, we propose a citizen-centric approach that combines cryptographic privacy-preserving technologies, such as homomorphic encryption and secure multi-party computation, with the auditability of blockchains. Our open-source implementation supports queries on the encrypted genomic data of hundreds of thousands of individuals, with minimal overhead. We show that real-world adoption of our system alleviates widespread privacy concerns and encourages data access sharing with researchers.

9.
Cell Syst ; 12(11): 1108-1120.e4, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34464590

RESUMO

Genotype imputation is a fundamental step in genomic data analysis, where missing variant genotypes are predicted using the existing genotypes of nearby "tag" variants. Although researchers can outsource genotype imputation, privacy concerns may prohibit genetic data sharing with an untrusted imputation service. Here, we developed secure genotype imputation using efficient homomorphic encryption (HE) techniques. In HE-based methods, the genotype data are secure while it is in transit, at rest, and in analysis. It can only be decrypted by the owner. We compared secure imputation with three state-of-the-art non-secure methods and found that HE-based methods provide genetic data security with comparable accuracy for common variants. HE-based methods have time and memory requirements that are comparable or lower than those for the non-secure methods. Our results provide evidence that HE-based methods can practically perform resource-intensive computations for high-throughput genetic data analysis. The source code is freely available for download at https://github.com/K-miran/secure-imputation.


Assuntos
Serviços Terceirizados , Segurança Computacional , Estudo de Associação Genômica Ampla , Genótipo , Privacidade
10.
BMC Med Genomics ; 13(Suppl 7): 88, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32693814

RESUMO

BACKGROUND: Privacy-preserving computations on genomic data, and more generally on medical data, is a critical path technology for innovative, life-saving research to positively and equally impact the global population. It enables medical research algorithms to be securely deployed in the cloud because operations on encrypted genomic databases are conducted without revealing any individual genomes. Methods for secure computation have shown significant performance improvements over the last several years. However, it is still challenging to apply them on large biomedical datasets. METHODS: The HE Track of iDash 2018 competition focused on solving an important problem in practical machine learning scenarios, where a data analyst that has trained a regression model (both linear and logistic) with a certain set of features, attempts to find all features in an encrypted database that will improve the quality of the model. Our solution is based on the hybrid framework Chimera that allows for switching between different families of fully homomorphic schemes, namely TFHE and HEAAN. RESULTS: Our solution is one of the finalist of Track 2 of iDash 2018 competition. Among the submitted solutions, ours is the only bootstrapped approach that can be applied for different sets of parameters without re-encrypting the genomic database, making it practical for real-world applications. CONCLUSIONS: This is the first step towards the more general feature selection problem across large encrypted databases.


Assuntos
Segurança Computacional , Privacidade , Algoritmos , Computação em Nuvem , Conjuntos de Dados como Assunto , Estudo de Associação Genômica Ampla , Humanos , Modelos Logísticos
11.
Stud Health Technol Inform ; 270: 317-321, 2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32570398

RESUMO

Medical studies are usually time consuming, cumbersome and extremely costly to perform, and for exploratory research, their results are also difficult to predict a priori. This is particularly the case for rare diseases, for which finding enough patients is difficult and usually requires an international-scale research. In this case, the process can be even more difficult due to the heterogeneity of data-protection regulations, making the data sharing process particularly hard. In this short paper, we propose MedCo2 (pronounced MedCo square), a distributed system that streamlines the process of a medical study by bridging and enabling both data discovery and data analysis among multiple databases, while protecting data confidentiality and patients' privacy. MedCo2 relies on interactive protocols, homomorphic encryption and differential privacy. It enables the privacy-preserving computations of multiple statistics such as cosine similarity and variance, and the training of machine learning models, on patients that are obliviously selected according to specific criteria among multiple databases.


Assuntos
Privacidade , Estudos de Coortes , Segurança Computacional , Confidencialidade , Humanos , Aprendizado de Máquina
12.
Stud Health Technol Inform ; 270: 238-241, 2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32570382

RESUMO

One major obstacle to developing precision medicine to its full potential is the privacy concerns related to genomic-data sharing. Even though the academic community has proposed many solutions to protect genomic privacy, these so far have not been adopted in practice, mainly due to their impact on the data utility. We introduce GenoShare, a framework that enables individual citizens to understand and quantify the risks of revealing genome-related privacy-sensitive attributes (e.g., health status, kinship, physical traits) from sharing their genomic data with (potentially untrusted) third parties. GenoShare enables informed decision-making about sharing exact genomic data, by jointly simulating genome-based inference attacks and quantifying the risk stemming from a potential data disclosure.


Assuntos
Bases de Dados Genéticas/ética , Privacidade Genética , Genômica/ética , Disseminação de Informação/ética , Consentimento Livre e Esclarecido , Confidencialidade , Revelação , Genoma , Humanos , Registro Médico Coordenado
13.
J Law Biosci ; 7(1): lsaa010, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32733683

RESUMO

Personalised medicine can improve both public and individual health by providing targeted preventative and therapeutic healthcare. However, patient health data must be shared between institutions and across jurisdictions for the benefits of personalised medicine to be realised. Whilst data protection, privacy, and research ethics laws protect patient confidentiality and safety they also may impede multisite research, particularly across jurisdictions. Accordingly, we compare the concept of data accessibility in data protection and research ethics laws across seven jurisdictions. These jurisdictions include Switzerland, Italy, Spain, the United Kingdom (which have implemented the General Data Protection Regulation), the United States, Canada, and Australia. Our paper identifies the requirements for consent, the standards for anonymisation or pseudonymisation, and adequacy of protection between jurisdictions as barriers for sharing. We also identify differences between the European Union and other jurisdictions as a significant barrier for data accessibility in cross jurisdictional multisite research. Our paper concludes by considering solutions to overcome these legislative differences. These solutions include data transfer agreements and organisational collaborations designed to `front load' the process of ethics approval, so that subsequent research protocols are standardised. We also allude to technical solutions, such as distributed computing, secure multiparty computation and homomorphic encryption.

14.
Stud Health Technol Inform ; 270: 1161-1162, 2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32570563

RESUMO

MedCo is the first operational system that makes sensitive medical-data available for research in a simple, privacy-conscious and secure way. It enables a consortium of clinical sites to collectively protect their data and to securely share them with investigators, without single points of failure. In this short paper, we report on our ongoing effort for the operational deployment of MedCo within the context of the Swiss Personalized Health Network (SPHN) for the Swiss Molecular Tumor Board.


Assuntos
Neoplasias , Privacidade , Segurança Computacional , Confidencialidade , Registros Eletrônicos de Saúde , Humanos , Poder Psicológico , Suíça
15.
J Am Med Inform Assoc ; 27(11): 1721-1726, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32918447

RESUMO

Global pandemics call for large and diverse healthcare data to study various risk factors, treatment options, and disease progression patterns. Despite the enormous efforts of many large data consortium initiatives, scientific community still lacks a secure and privacy-preserving infrastructure to support auditable data sharing and facilitate automated and legally compliant federated analysis on an international scale. Existing health informatics systems do not incorporate the latest progress in modern security and federated machine learning algorithms, which are poised to offer solutions. An international group of passionate researchers came together with a joint mission to solve the problem with our finest models and tools. The SCOR Consortium has developed a ready-to-deploy secure infrastructure using world-class privacy and security technologies to reconcile the privacy/utility conflicts. We hope our effort will make a change and accelerate research in future pandemics with broad and diverse samples on an international scale.


Assuntos
Pesquisa Biomédica , Segurança Computacional , Infecções por Coronavirus , Disseminação de Informação , Pandemias , Pneumonia Viral , Privacidade , COVID-19 , Humanos , Disseminação de Informação/ética , Internacionalidade , Aprendizado de Máquina
16.
IEEE/ACM Trans Comput Biol Bioinform ; 16(4): 1328-1341, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30010584

RESUMO

The increasing number of health-data breaches is creating a complicated environment for medical-data sharing and, consequently, for medical progress. Therefore, the development of new solutions that can reassure clinical sites by enabling privacy-preserving sharing of sensitive medical data in compliance with stringent regulations (e.g., HIPAA, GDPR) is now more urgent than ever. In this work, we introduce MedCo, the first operational system that enables a group of clinical sites to federate and collectively protect their data in order to share them with external investigators without worrying about security and privacy concerns. MedCo uses (a) collective homomorphic encryption to provide trust decentralization and end-to-end confidentiality protection, and (b) obfuscation techniques to achieve formal notions of privacy, such as differential privacy. A critical feature of MedCo is that it is fully integrated within the i2b2 (Informatics for Integrating Biology and the Bedside) framework, currently used in more than 300 hospitals worldwide. Therefore, it is easily adoptable by clinical sites. We demonstrate MedCo's practicality by testing it on data from The Cancer Genome Atlas in a simulated network of three institutions. Its performance is comparable to the ones of SHRINE (networked i2b2), which, in contrast, does not provide any data protection guarantee.


Assuntos
Segurança Computacional , Registros Eletrônicos de Saúde , Genômica , Informática Médica/métodos , Algoritmos , Confidencialidade , Genoma Humano , Hospitais , Humanos , Internet , Mutação , Neoplasias/genética , Proteínas Proto-Oncogênicas B-raf/genética , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA