Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
PLoS Biol ; 20(12): e3001929, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36508419

RESUMO

Nature-based climate solutions (NbCS) hold promise, but must be based on the best available science to be successful. We outline key ingredients of open data and science crucial for robust and scalable nature-based climate solutions efforts, as an urgent call to action for academic researchers, nongovernmental organizations, government agencies, and private companies.


Assuntos
Clima , Órgãos Governamentais , Mudança Climática
2.
Plant Cell Environ ; 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38348610

RESUMO

An exponential rise in the atmospheric vapour pressure deficit (VPD) is among the most consequential impacts of climate change in terrestrial ecosystems. Rising VPD has negative and cascading effects on nearly all aspects of plant function including photosynthesis, water status, growth and survival. These responses are exacerbated by land-atmosphere interactions that couple VPD to soil water and govern the evolution of drought, affecting a range of ecosystem services including carbon uptake, biodiversity, the provisioning of water resources and crop yields. However, despite the global nature of this phenomenon, research on how to incorporate these impacts into resilient management regimes is largely in its infancy, due in part to the entanglement of VPD trends with those of other co-evolving climate drivers. Here, we review the mechanistic bases of VPD impacts at a range of spatial scales, paying particular attention to the independent and interactive influence of VPD in the context of other environmental changes. We then evaluate the consequences of these impacts within key management contexts, including water resources, croplands, wildfire risk mitigation and management of natural grasslands and forests. We conclude with recommendations describing how management regimes could be altered to mitigate the otherwise highly deleterious consequences of rising VPD.

3.
Nature ; 561(7724): 538-541, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30232452

RESUMO

Plants influence the atmosphere through fluxes of carbon, water and energy1, and can intensify drought through land-atmosphere feedback effects2-4. The diversity of plant functional traits in forests, especially physiological traits related to water (hydraulic) transport, may have a critical role in land-atmosphere feedback, particularly during drought. Here we combine 352 site-years of eddy covariance measurements from 40 forest sites, remote-sensing observations of plant water content and plant functional-trait data to test whether the diversity in plant traits affects the response of the ecosystem to drought. We find evidence that higher hydraulic diversity buffers variation in ecosystem flux during dry periods across temperate and boreal forests. Hydraulic traits were the predominant significant predictors of cross-site patterns in drought response. By contrast, standard leaf and wood traits, such as specific leaf area and wood density, had little explanatory power. Our results demonstrate that diversity in the hydraulic traits of trees mediates ecosystem resilience to drought and is likely to have an important role in future ecosystem-atmosphere feedback effects in a changing climate.


Assuntos
Aclimatação/fisiologia , Biodiversidade , Secas , Florestas , Árvores/anatomia & histologia , Árvores/fisiologia , Água/metabolismo , Atmosfera/química , Mudança Climática , Retroalimentação , Folhas de Planta/anatomia & histologia , Folhas de Planta/metabolismo , Madeira/anatomia & histologia , Madeira/metabolismo
4.
Glob Chang Biol ; 29(4): 1096-1105, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36468232

RESUMO

Episodes of forest mortality have been observed worldwide associated with climate change, impacting species composition and ecosystem services such as water resources and carbon sequestration. Yet our ability to predict forest mortality remains limited, especially across large scales. Time series of satellite imagery has been used to document ecosystem resilience globally, but it is not clear how well remotely sensed resilience can inform the prediction of forest mortality across continental, multi-biome scales. Here, we leverage forest inventories across the continental United States to systematically assess the potential of ecosystem resilience derived using different data sets and methods to predict forest mortality. We found high resilience was associated with low mortality in eastern forests but was associated with high mortality in western regions. The unexpected resilience-mortality relation in western United States may be due to several factors including plant trait acclimation, insect population dynamics, or resource competition. Overall, our results not only supported the opportunity to use remotely sensed ecosystem resilience to predict forest mortality but also highlighted that ecological factors may have crucial influences because they can reverse the sign of the resilience-mortality relationships.


Assuntos
Ecossistema , Árvores , Estados Unidos , Florestas , Dinâmica Populacional , Sequestro de Carbono , Mudança Climática
5.
Proc Natl Acad Sci U S A ; 117(15): 8532-8538, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32229563

RESUMO

Understanding the driving mechanisms behind existing patterns of vegetation hydraulic traits and community trait diversity is critical for advancing predictions of the terrestrial carbon cycle because hydraulic traits affect both ecosystem and Earth system responses to changing water availability. Here, we leverage an extensive trait database and a long-term continental forest plot network to map changes in community trait distributions and quantify "trait velocities" (the rate of change in community-weighted traits) for different regions and different forest types across the United States from 2000 to the present. We show that diversity in hydraulic traits and photosynthetic characteristics is more related to local water availability than overall species diversity. Finally, we find evidence for coordinated shifts toward communities with more drought-tolerant traits driven by tree mortality, but the magnitude of responses differs depending on forest type. The hydraulic trait distribution maps provide a publicly available platform to fundamentally advance understanding of community trait change in response to climate change and predictive abilities of mechanistic vegetation models.


Assuntos
Biodiversidade , Mudança Climática , Ecossistema , Florestas , Fenômenos Fisiológicos Vegetais , Árvores/fisiologia , Água , Secas , Estresse Fisiológico
6.
Ecol Lett ; 25(2): 498-508, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34972244

RESUMO

Carbon use efficiency (CUE) represents how efficient a plant is at translating carbon gains through gross primary productivity (GPP) into net primary productivity (NPP) after respiratory costs (Ra ). CUE varies across space with climate and species composition, but how CUE will respond to climate change is largely unknown due to uncertainty in Ra at novel high temperatures. We use a plant physiological model validated against global CUE observations and LIDAR vegetation canopy height data and find that model-predicted decreases in CUE are diagnostic of transitions from forests to shrubland at dry range edges. Under future climate scenarios, we show mean growing season CUE increases in core forested areas, but forest extent decreases at dry range edges, with substantial uncertainty in absolute CUE due to uncertainty in Ra . Our results highlight that future forest resilience is nuanced and controlled by multiple competing mechanisms.


Assuntos
Carbono , Mudança Climática , Ciclo do Carbono , Florestas , Plantas , Árvores
7.
Ecol Lett ; 25(6): 1510-1520, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35546256

RESUMO

Forests are currently a substantial carbon sink globally. Many climate change mitigation strategies leverage forest preservation and expansion, but rely on forests storing carbon for decades to centuries. Yet climate-driven disturbances pose critical risks to the long-term stability of forest carbon. We quantify the climate drivers that influence wildfire and climate stress-driven tree mortality, including a separate insect-driven tree mortality, for the contiguous United States for current (1984-2018) and project these future disturbance risks over the 21st century. We find that current risks are widespread and projected to increase across different emissions scenarios by a factor of >4 for fire and >1.3 for climate-stress mortality. These forest disturbance risks highlight pervasive climate-sensitive disturbance impacts on US forests and raise questions about the risk management approach taken by forest carbon offset policies. Our results provide US-wide risk maps of key climate-sensitive disturbances for improving carbon cycle modeling, conservation and climate policy.


Assuntos
Incêndios , Florestas , Animais , Carbono , Mudança Climática , Insetos , Árvores , Estados Unidos
8.
New Phytol ; 234(1): 21-27, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34679225

RESUMO

Forests are a critical carbon sink and widespread tree mortality resulting from climate-induced drought stress has the potential to alter forests from a carbon sink to a source, causing a positive feedback on climate change. Process-based vegetation models aim to represent the current understanding of the underlying mechanisms governing plant physiological and ecological responses to climate. Yet model accuracy varies across scales, and regional-scale model predictive skill is frequently poor when compared with observations of drought-driven mortality. I propose a framework that leverages differences in model predictive skill across spatial scales, mismatches between model predictions and observations, and differences in the mechanisms included and absent across models to advance the understanding of the physiological and ecological processes driving observed patterns drought-driven mortality.


Assuntos
Secas , Árvores , Mudança Climática , Ecossistema , Florestas , Fenômenos Fisiológicos Vegetais , Árvores/fisiologia
9.
Glob Chang Biol ; 28(4): 1433-1445, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34668621

RESUMO

Carbon offsets are widely used by individuals, corporations, and governments to mitigate their greenhouse gas emissions on the assumption that offsets reflect equivalent climate benefits achieved elsewhere. These climate-equivalence claims depend on offsets providing real and additional climate benefits beyond what would have happened, counterfactually, without the offsets project. Here, we evaluate the design of California's prominent forest carbon offsets program and demonstrate that its climate-equivalence claims fall far short on the basis of directly observable evidence. By design, California's program awards large volumes of offset credits to forest projects with carbon stocks that exceed regional averages. This paradigm allows for adverse selection, which could occur if project developers preferentially select forests that are ecologically distinct from unrepresentative regional averages. By digitizing and analyzing comprehensive offset project records alongside detailed forest inventory data, we provide direct evidence that comparing projects against coarse regional carbon averages has led to systematic over-crediting of 30.0 million tCO2 e (90% CI: 20.5-38.6 million tCO2 e) or 29.4% of the credits we analyzed (90% CI: 20.1%-37.8%). These excess credits are worth an estimated $410 million (90% CI: $280-$528 million) at recent market prices. Rather than improve forest management to store additional carbon, California's forest offsets program creates incentives to generate offset credits that do not reflect real climate benefits.


Assuntos
Carbono , Gases de Efeito Estufa , California , Conservação dos Recursos Naturais , Florestas , Humanos
10.
Proc Natl Acad Sci U S A ; 116(28): 14071-14076, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31235581

RESUMO

The fluxes of energy, water, and carbon from terrestrial ecosystems influence the atmosphere. Land-atmosphere feedbacks can intensify extreme climate events like severe droughts and heatwaves because low soil moisture decreases both evaporation and plant transpiration and increases local temperature. Here, we combine data from a network of temperate and boreal eddy covariance towers, satellite data, plant trait datasets, and a mechanistic vegetation model to diagnose the controls of soil moisture feedbacks to drought. We find that climate and plant functional traits, particularly those related to maximum leaf gas exchange rate and water transport through the plant hydraulic continuum, jointly affect drought intensification. Our results reveal that plant physiological traits directly affect drought intensification and indicate that inclusion of plant hydraulic transport mechanisms in models may be critical for accurately simulating land-atmosphere feedbacks and climate extremes under climate change.


Assuntos
Atmosfera/química , Mudança Climática , Ecossistema , Transpiração Vegetal/fisiologia , Agricultura , Carbono/química , Carbono/metabolismo , Secas , Humanos , Desenvolvimento Vegetal , Folhas de Planta/química , Folhas de Planta/crescimento & desenvolvimento , Plantas/genética , Solo/química , Água/química , Água/metabolismo
11.
Proc Natl Acad Sci U S A ; 116(51): 25734-25744, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31767760

RESUMO

The response of forests to climate change depends in part on whether the photosynthetic benefit from increased atmospheric CO2 (∆Ca = future minus historic CO2) compensates for increased physiological stresses from higher temperature (∆T). We predicted the outcome of these competing responses by using optimization theory and a mechanistic model of tree water transport and photosynthesis. We simulated current and future productivity, stress, and mortality in mature monospecific stands with soil, species, and climate sampled from 20 continental US locations. We modeled stands with and without acclimation to ∆Ca and ∆T, where acclimated forests adjusted leaf area, photosynthetic capacity, and stand density to maximize productivity while avoiding stress. Without acclimation, the ∆Ca-driven boost in net primary productivity (NPP) was compromised by ∆T-driven stress and mortality associated with vascular failure. With acclimation, the ∆Ca-driven boost in NPP and stand biomass (C storage) was accentuated for cooler futures but negated for warmer futures by a ∆T-driven reduction in NPP and biomass. Thus, hotter futures reduced forest biomass through either mortality or acclimation. Forest outcomes depended on whether projected climatic ∆Ca/∆T ratios were above or below physiological thresholds that neutralized the negative impacts of warming. Critically, if forests do not acclimate, the ∆Ca/∆T must be above ca 89 ppm⋅°C-1 to avoid chronic stress, a threshold met by 55% of climate projections. If forests do acclimate, the ∆Ca/∆T must rise above ca 67 ppm⋅°C-1 for NPP and biomass to increase, a lower threshold met by 71% of projections.


Assuntos
Aclimatação/fisiologia , Dióxido de Carbono , Aquecimento Global , Modelos Biológicos , Árvores , Algoritmos , Secas , Florestas , Árvores/metabolismo , Árvores/fisiologia , Estados Unidos
12.
Proc Natl Acad Sci U S A ; 116(49): 24662-24667, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31740604

RESUMO

Forests play a major role in the global carbon cycle. Previous studies on the capacity of forests to sequester atmospheric CO2 have mostly focused on carbon uptake, but the roles of carbon turnover time and its spatiotemporal changes remain poorly understood. Here, we used long-term inventory data (1955 to 2018) from 695 mature forest plots to quantify temporal trends in living vegetation carbon turnover time across tropical, temperate, and cold climate zones, and compared plot data to 8 Earth system models (ESMs). Long-term plots consistently showed decreases in living vegetation carbon turnover time, likely driven by increased tree mortality across all major climate zones. Changes in living vegetation carbon turnover time were negatively correlated with CO2 enrichment in both forest plot data and ESM simulations. However, plot-based correlations between living vegetation carbon turnover time and climate drivers such as precipitation and temperature diverged from those of ESM simulations. Our analyses suggest that forest carbon sinks are likely to be constrained by a decrease in living vegetation carbon turnover time, and accurate projections of forest carbon sink dynamics will require an improved representation of tree mortality processes and their sensitivity to climate in ESMs.


Assuntos
Sequestro de Carbono/fisiologia , Ecologia/métodos , Florestas , Modelos Teóricos , Árvores/fisiologia , Atmosfera/análise , Dióxido de Carbono/análise , Mudança Climática , Ecologia/estatística & dados numéricos , Monitoramento Ambiental/estatística & dados numéricos , Análise Espaço-Temporal , Temperatura , Incerteza
14.
New Phytol ; 230(4): 1550-1561, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33576001

RESUMO

Nocturnal transpiration is widely observed across species and biomes, and may significantly impact global water, carbon, and energy budgets. However, it remains elusive why plants lose water at night and how to model it at large scales. We hypothesized that plants optimize nighttime leaf diffusive conductance (gwn ) to balance potential daytime photosynthetic benefits and nocturnal transpiration benefits. We quantified nighttime benefits from respiratory reductions due to evaporative leaf cooling. We described nighttime costs in terms of a reduced carbon gain during the day because of water use at night. We measured nighttime stomatal responses and tested our model with water birch (Betula occidentalis) saplings grown in a glasshouse. The gwn of water birch decreased with drier soil, higher atmospheric CO2 , wetter air, lower leaf temperature, and lower leaf respiration rate. Our model predicted all these responses correctly, except for the response of gwn to air humidity. Our results also suggested that the slow decrease in gwn after sunset could be associated with decreasing leaf respiration. The optimality-based nocturnal transpiration model smoothly integrates with daytime stomatal optimization approaches, and thus has the potential to quantitatively predict nocturnal transpiration across space and time.


Assuntos
Fotossíntese , Transpiração Vegetal , Folhas de Planta , Estômatos de Plantas , Solo , Água
15.
New Phytol ; 230(5): 1896-1910, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33112415

RESUMO

Global warming is expected to exacerbate the duration and intensity of droughts in the western United States, which may lead to increased tree mortality. A prevailing proximal mechanism of drought-induced tree mortality is hydraulic damage, but predicting tree mortality from hydraulic theory and climate data still remains a major scientific challenge. We used forest inventory data and a plant hydraulic model (HM) to address three questions: can we capture regional patterns of drought-induced tree mortality with HM-predicted damage thresholds; do HM metrics improve predictions of mortality across broad spatial areas; and what are the dominant controls of forest mortality when considering stand characteristics, climate metrics, and simulated hydraulic stress? We found that the amount of variance explained by models predicting mortality was limited (R2 median = 0.10, R2 range: 0.00-0.52). HM outputs, including hydraulic damage and carbon assimilation diagnostics, moderately improve mortality prediction across the western US compared with models using stand and climate predictors alone. Among factors considered, metrics of stand density and tree size tended to be some of the most critical factors explaining mortality, probably highlighting the important roles of structural overshoot, stand development, and biotic agent host selection and outbreaks in mortality patterns.


Assuntos
Secas , Florestas , Clima , Mudança Climática , Árvores , Estados Unidos
16.
New Phytol ; 230(6): 2226-2245, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33521942

RESUMO

Trees partition biomass in response to resource limitation and physiological activity. It is presumed that these strategies evolved to optimize some measure of fitness. If the optimization criterion can be specified, then allometry can be modeled from first principles without prescribed parameterization. We present the Tree Hydraulics and Optimal Resource Partitioning (THORP) model, which optimizes allometry by estimating allocation fractions to organs as proportional to their ratio of marginal gain to marginal cost, where gain is net canopy photosynthesis rate, and costs are senescence rates. Root total biomass and profile shape are predicted simultaneously by a unified optimization. Optimal partitioning is solved by a numerically efficient analytical solution. THORP's predictions agree with reported tree biomass partitioning in response to size, water limitations, elevated CO2 and pruning. Roots were sensitive to soil moisture profiles and grew down to the groundwater table when present. Groundwater buffered against water stress regardless of meteorology, stabilizing allometry and root profiles as deep as c. 30 m. Much of plant allometry can be explained by hydraulic considerations. However, nutrient limitations cannot be fully ignored. Rooting mass and profiles were synchronized with hydrological conditions and groundwater even at considerable depths, illustrating that the below ground shapes whole-tree allometry.


Assuntos
Árvores , Xilema , Biomassa , Fotossíntese , Folhas de Planta , Água
17.
New Phytol ; 227(2): 311-325, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32248532

RESUMO

Optimal stomatal control models have shown great potential in predicting stomatal behavior and improving carbon cycle modeling. Basic stomatal optimality theory posits that stomatal regulation maximizes the carbon gain relative to a penalty of stomatal opening. All models take a similar approach to calculate instantaneous carbon gain from stomatal opening (the gain function). Where the models diverge is in how they calculate the corresponding penalty (the penalty function). In this review, we compare and evaluate 10 different optimization models in how they quantify the penalty and how well they predict stomatal responses to the environment. We evaluate models in two ways. First, we compare their penalty functions against seven criteria that ensure a unique and qualitatively realistic solution. Second, we quantitatively test model against multiple leaf gas-exchange datasets. The optimization models with better predictive skills have penalty functions that meet our seven criteria and use fitting parameters that are both few in number and physiology based. The most skilled models are those with a penalty function based on stress-induced hydraulic failure. We conclude by proposing a new model that has a hydraulics-based penalty function that meets all seven criteria and demonstrates a highly predictive skill against our test datasets.


Assuntos
Folhas de Planta , Estômatos de Plantas , Carbono , Dióxido de Carbono , Água
18.
New Phytol ; 226(2): 351-361, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31853979

RESUMO

Shrub encroachment, forest decline and wildfires have caused large-scale changes in semi-arid vegetation over the past 50 years. Climate is a primary determinant of plant growth in semi-arid ecosystems, yet it remains difficult to forecast large-scale vegetation shifts (i.e. biome shifts) in response to climate change. We highlight recent advances from four conceptual perspectives that are improving forecasts of semi-arid biome shifts. Moving from small to large scales, first, tree-level models that simulate the carbon costs of drought-induced plant hydraulic failure are improving predictions of delayed-mortality responses to drought. Second, tracer-informed water flow models are improving predictions of species coexistence as a function of climate. Third, new applications of ecohydrological models are beginning to simulate small-scale water movement processes at large scales. Fourth, remotely-sensed measurements of plant traits such as relative canopy moisture are providing early-warning signals that predict forest mortality more than a year in advance. We suggest that a community of researchers using modeling approaches (e.g. machine learning) that can integrate these perspectives will rapidly improve forecasts of semi-arid biome shifts. Better forecasts can be expected to help prevent catastrophic changes in vegetation states by identifying improved monitoring approaches and by prioritizing high-risk areas for management.


Assuntos
Mudança Climática , Ecossistema , Secas , Florestas , Árvores
19.
Glob Chang Biol ; 25(11): 3793-3802, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31323157

RESUMO

Drought-induced tree mortality is projected to increase due to climate change, which will have manifold ecological and societal impacts including the potential to weaken or reverse the terrestrial carbon sink. Predictions of tree mortality remain limited, in large part because within-species variations in ecophysiology due to plasticity or adaptation and ecosystem adjustments could buffer mortality in dry locations. Here, we conduct a meta-analysis of 50 studies spanning >100 woody plant species globally to quantify how populations within species vary in vulnerability to drought mortality and whether functional traits or climate mediate mortality patterns. We find that mortality predominantly occurs in drier populations and this pattern is more pronounced in species with xylem that can tolerate highly negative water potentials, typically considered to be an adaptive trait for dry regions, and species that experience higher variability in water stress. Our results indicate that climate stress has exceeded physiological and ecosystem-level tolerance or compensating mechanisms by triggering extensive mortality at dry range edges and provides a foundation for future mortality projections in empirical distribution and mechanistic vegetation models.


Assuntos
Secas , Árvores , Mudança Climática , Ecossistema , Xilema
20.
Glob Chang Biol ; 25(12): 4008-4021, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31465580

RESUMO

Plant functional traits provide a link in process-based vegetation models between plant-level physiology and ecosystem-level responses. Recent advances in physiological understanding and computational efficiency have allowed for the incorporation of plant hydraulic processes in large-scale vegetation models. However, a more mechanistic representation of water limitation that determines ecosystem responses to plant water stress necessitates a re-evaluation of trait-based constraints for plant carbon allocation, particularly allocation to leaf area. In this review, we examine model representations of plant allocation to leaves, which is often empirically set by plant functional type-specific allometric relationships. We analyze the evolution of the representation of leaf allocation in models of different scales and complexities. We show the impacts of leaf allocation strategy on plant carbon uptake in the context of recent advancements in modeling hydraulic processes. Finally, we posit that deriving allometry from first principles using mechanistic hydraulic processes is possible and should become standard practice, rather than using prescribed allometries. The representation of allocation as an emergent property of scarce resource constraints is likely to be critical to representing how global change processes impact future ecosystem dynamics and carbon fluxes and may reduce the number of poorly constrained parameters in vegetation models.


Assuntos
Mudança Climática , Ecossistema , Ciclo do Carbono , Folhas de Planta , Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA