Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
BMC Genomics ; 24(1): 793, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38124030

RESUMO

BACKGROUND: Heat shock proteins (HSPs) function as molecular chaperones with critical roles in chicken embryogenesis, immune response to infectious diseases, and response to various environmental stresses. However, little is known on HSP genes in chicken. In this study, to understand the roles of chicken HSPs, we performed genome-wide identification, expression, and functional analyses of the HSP family genes in chicken. RESULTS: A total of 76 HSP genes were identified in the chicken genome, which were further classified into eight distinct groups (I-VIII) based on phylogenetic tree analysis. The gene-structure analysis revealed that the members of each clade had the same or similar exon-intron structures. Chromosome mapping suggested that HSP genes were widely dispersed across the chicken genome, except in chromosomes 16, 18, 22, 25, 26, and 28-32, which lacked chicken HSP genes. On the other hand, the interactions among chicken HSPs were limited, indicating that the remaining functions of HSPs could be investigated in chicken. Moreover, KEGG pathway analysis showed that the HSP gene family was involved in the regulation of heat stress, apoptotic, intracellular signaling, and immune response pathways. Finally, RNA sequencing data revealed that, of the 76 chicken HSP genes, 46 were differentially expressed at 21 different growth stages in chicken embryos, and 72 were differentially expressed on post-infection day 3 in two indigenous Ri chicken lines infected with highly pathogenic avian influenza. CONCLUSIONS: This study provides significant insights into the potential functions of HSPs in chicken, including the regulation of apoptosis, heat stress, chaperone activity, intracellular signaling, and immune response to infectious diseases.


Assuntos
Doenças Transmissíveis , Influenza Aviária , Embrião de Galinha , Animais , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Galinhas/genética , Galinhas/metabolismo , Filogenia , Influenza Aviária/genética , Genômica
2.
Vet Res ; 52(1): 36, 2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33658079

RESUMO

Exosomes are membrane vesicles containing proteins, lipids, DNA, mRNA, and micro RNA (miRNA). Exosomal miRNA from donor cells can regulate the gene expression of recipient cells. Here, Ri chickens were divided into resistant (Mx/A; BF2/B21) and susceptible (Mx/G; BF2/B13) trait by genotyping of Mx and BF2 genes. Then, Ri chickens were infected with H5N1, a highly pathogenic avian influenza virus (HPAIV). Exosomes were purified from blood serum of resistant chickens for small RNA sequencing. Sequencing data were analysed using FastQCv0.11.7, Cutadapt 1.16, miRBase v21, non-coding RNA database, RNAcentral 10.0, and miRDeep2. Differentially expressed miRNAs were determined using statistical methods, including fold-change, exactTest using edgeR, and hierarchical clustering. Target genes were predicted using miRDB. Gene ontology analysis was performed using gProfiler. Twenty miRNAs showed significantly different expression patterns between resistant control and infected chickens. Nine miRNAs were up-regulated and 11 miRNAs were down-regulated in the infected chickens compared with that in the control chickens. In target gene analysis, various immune-related genes, such as cytokines, chemokines, and signalling molecules, were detected. In particular, mitogen-activated protein kinase (MAPK) pathway molecules were highly controlled by differentially expressed miRNAs. The result of qRT-PCR for miRNAs was identical with sequencing data and miRNA expression level was higher in resistant than susceptible chickens. This study will help to better understand the host immune response, particularly exosomal miRNA expression against HPAIV H5N1 and could help to determine biomarkers for disease resistance.


Assuntos
Galinhas , Exossomos/genética , Influenza Aviária/virologia , MicroRNAs/genética , Doenças das Aves Domésticas/virologia , Animais , Virus da Influenza A Subtipo H5N1/fisiologia
3.
Vet Res ; 51(1): 8, 2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-32014061

RESUMO

MicroRNAs (miRNAs) are small non-coding RNAs that contribute to host immune response as post-transcriptional regulation. The current study investigated the biological role of the chicken (Gallus gallus) microRNA-200a-3p (gga-miR-200a-3p), using 2 necrotic enteritis (NE) afflicted genetically disparate chicken lines, 6.3 and 7.2, as well as the mechanisms underlying the fundamental signaling pathways in chicken. The expression of gga-miR-200a-3p in the intestinal mucosal layer of NE-induced chickens, was found to be upregulated during NE infection in the disease-susceptible chicken line 7.2. To validate the target genes, we performed an overexpression analysis of gga-miR-200a-3p using chemically synthesized oligonucleotides identical to gga-miR-200a-3p, reporter gene analysis including luciferase reporter assay, and a dual fluorescence reporter assay in cultured HD11 chicken macrophage cell lines. Gga-miR-200a-3p was observed to be a direct transcriptional repressor of ZAK, MAP2K4, and TGFß2 that are involved in mitogen-activated protein kinase (MAPK) pathway by targeting the 3'-UTR of their transcripts. Besides, gga-miR-200a-3p may indirectly affect the expression of protein kinases including p38 and ERK1/2 at both transcriptional and translational levels, suggesting that this miRNA may function as an important regulator of the MAPK signaling pathway. Proinflammatory cytokines consisting of IL-1ß, IFN-γ, IL-12p40, IL-17A, and LITAF belonging to Th1 and Th17-type cytokines, were upregulated upon gga-miR-200a-3p overexpression. These findings have enhanced our knowledge of the immune function of gga-miR-200a-3p mediating the chicken immune response via regulation of the MAPK signaling pathway and indicate that this miRNA may serve as an important biomarker of diseases in domestic animals.


Assuntos
Galinhas , Enterite/veterinária , Imunidade Inata/genética , MicroRNAs/imunologia , Necrose/veterinária , Doenças das Aves Domésticas/imunologia , Animais , Enterite/genética , Enterite/imunologia , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/imunologia , Necrose/genética , Necrose/imunologia , Doenças das Aves Domésticas/genética , Transdução de Sinais
4.
Asian-Australas J Anim Sci ; 33(10): 1683-1690, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32054190

RESUMO

OBJECTIVE: The rapid and reliable detection of the African swine fever virus (ASFV) plays an important role in emergency control and preventive measures of ASF. Some methods have been recommended by FAO/OIE to detect ASFV in clinical samples, including realtime polymerase chain reaction (PCR). However, mismatches in primer and probe binding regions may cause a false-negative result. Here, a slight modification in probe sequence has been conducted to improve the qualification of real-time PCR based on World Organization for Animal Health (OIE) protocol for accurate detection of ASFV in field samples in Vietnam. METHODS: Seven positive confirmed samples (four samples have no mismatch, and three samples contained one mutation in probe binding sites) were used to establish novel real-time PCR with slightly modified probe (Y = C or T) in comparison with original probe recommended by OIE. RESULTS: Both real-time PCRs using the OIE-recommended probe and novel modified probe can detect ASFV in clinical samples without mismatch in probe binding site. A high correlation of cycle quantification (Cq) values was observed in which Cq values obtained from both probes arranged from 22 to 25, suggesting that modified probe sequence does not impede the qualification of real-time PCR to detect ASFV in clinical samples. However, the samples with one mutation in probe binding sites were ASFV negative with OIE recommended probe but positive with our modified probe (Cq value ranked between 33.12-35.78). CONCLUSION: We demonstrated for the first time that a mismatch in probe binding regions caused a false negative result by OIE recommended real-time PCR, and a slightly modified probe is required to enhance the sensitivity and obtain an ASF accurate diagnosis in field samples in Vietnam.

5.
Asian-Australas J Anim Sci ; 32(7): 1052-1061, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30381731

RESUMO

OBJECTIVE: This study was conducted to identify duck liver-expressed antimicrobial peptide 2 (LEAP-2) and demonstrate its antimicrobial activity against various pathogens. METHODS: Tissue samples were collected from 6 to 8-week-old Pekin ducks (Anas platyrhynchos domesticus), total RNA was extracted, and cDNA was synthesized. To confirm the duck LEAP-2 transcript expression levels, quantitative real-time polymerase chain reaction was conducted. Two kinds of peptides (a linear peptide and a disulfide-type peptide) were synthesized to compare the antimicrobial activity. Then, antimicrobial activity assay and fluorescence microscopic analysis were conducted to demonstrate duck LEAP-2 bactericidal activity. RESULTS: The duck LEAP-2 peptide sequence showed high identity with those of other avian species (>85%), as well as more than 55% of identity with mammalian sequences. LEAP-2 mRNA was highly expressed in the liver with duodenum next, and then followed by lung, spleen, bursa and jejunum and was the lowest in the muscle. Both of LEAP-2 peptides efficiently killed bacteria, although the disulfide-type LEAP-2 showed more powerful bactericidal activity. Also, gram-positive bacteria was more susceptible to duck LEAP-2 than gram-negative bacteria. Using microscopy, we confirmed that LEAP-2 peptides could kill bacteria by disrupting the bacterial cell envelope. CONCLUSION: Duck LEAP-2 showed its antimicrobial activity against both gram-positive and gram-negative bacteria. Disulfide bonds were important for the powerful killing effect by disrupting the bacterial cell envelope. Therefore, duck LEAP-2 can be used for effective antibiotics alternatives.

6.
Asian-Australas J Anim Sci ; 32(5): 614-628, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30381742

RESUMO

OBJECTIVE: The inhibitory leukocyte immunoglobulin-like receptors (LILRBs) play an important role in innate immunity. The present study represents the first description of the cloning and structural and functional analysis of LILRB1 and LILRB3 isolated from two genetically disparate chicken lines. METHODS: Chicken LILRB1-3 genes were identified by bioinformatics approach. Expression studies were performed by transfection, quantitative polymerase chain reaction. Signal transduction was analyzed by western blots, immunoprecipitation and flow cytometric. Cytokine levels were determined by enzyme-linked immunosorbent assay. RESULTS: Amino acid homology and phylogenetic analyses showed that the homologies of LILRB1 and LILRB3 in the chicken line 6.3 to those proteins in the chicken line 7.2 ranged between 97%-99%, while homologies between chicken and mammal proteins ranged between 13%-19%, and 13%-69%, respectively. Our findings indicate that LILRB1 and LILRB3 subdivided into two groups based on the immunoreceptor tyrosine-based inhibitory motifs (ITIM) present in the transmembrane domain. Chicken line 6.3 has two ITIM motifs of the sequence LxYxxL and SxYxxV while line 7.2 has two ITIM motifs of the sequences LxYxxL and LxYxxV. These motifs bind to SHP-2 (protein tyrosine phosphatase, non-receptor type 11) that plays a regulatory role in immune functions. Moreover, our data indicate that LILRB1 and LILRB3 associated with and activated major histocompatibility complex (MHC) class I and ß2-microglobulin and induced the expression of transporters associated with antigen processing, which are essential for MHC class I antigen presentation. This suggests that LILRB1 and LILRB3 are transcriptional regulators, modulating the expression of components in the MHC class I pathway and thereby regulating immune responses. Furthermore, LILRB1 and LILRB3 activated Janus kinase2/tyrosine kinase 2 (JAK2/TYK2); signal transducer and activator of transcription1/3 (STAT1/3), and suppressor of cytokine signaling 1 genes expressed in Macrophage (HD11) cells, which induced Th1, Th2, and Th17 cytokines. CONCLUSION: These data indicate that LILRB1 and LILRB3 are innate immune receptors associated with SHP-2, MHC class I, ß2-microglobulin, and they activate the Janus kinase/signal transducer and activator of transcription signaling pathway. Thus, our study provides novel insights into the regulation of immunity and immunopathology.

7.
Int J Mol Sci ; 19(6)2018 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-29874806

RESUMO

Interleukin-34 (IL-34) is a newly recognized cytokine with functions similar to macrophage colony-stimulating factor 1. It is expressed in macrophages and fibroblasts, where it induces cytokine production; however, the mechanism of chicken IL-34 (chIL-34) signaling has not been identified to date. The aim of this study was to analyze the signal transduction pathways and specific biological functions associated with chIL-34 in chicken macrophage (HD11) and fibroblast (OU2) cell lines. We found that IL-34 is a functional ligand for the colony-stimulating factor receptor (CSF-1R) in chicken cell lines. Treatment with chIL-34 increased the expression of Th1 and Th17 cytokines through phosphorylation of tyrosine and serine residues in Janus kinase (JAK) 2, tyrosine kinase 2 (TYK2), signal transducer and activator of transcription (STAT) 1, STAT3, and Src homology 2-containing tyrosine phosphatase 2 (SHP-2), which also led to phosphorylation of NF-κB1, p-mitogen-activated protein kinase kinase kinase 7 (TAK1), MyD88, suppressor of cytokine signaling 1 (SOCS1), and extracellular signal-regulated kinase 1 and 2 (ERK1/2). Taken together, these results suggest that chIL-34 functions by binding to CSF-1R and activating the JAK/STAT, nuclear factor κ B (NF-κB), and mitogen-activated protein kinase signaling pathways; these signaling events regulate cytokine expression and suggest roles for chIL-34 in innate and adaptive immunity.


Assuntos
Citocinas/biossíntese , Imunidade Inata/imunologia , Interleucinas/genética , Receptor de Fator Estimulador de Colônias de Macrófagos/genética , Animais , Galinhas , Citocinas/imunologia , Fibroblastos/imunologia , Fibroblastos/patologia , Regulação da Expressão Gênica/genética , Interleucinas/imunologia , Ligantes , Macrófagos/imunologia , Macrófagos/patologia , Ligação Proteica/genética , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Transdução de Sinais , Células Th1/imunologia , Células Th17/imunologia
8.
Int J Mol Sci ; 19(9)2018 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-30208630

RESUMO

The activating leukocyte immunoglobulin-like receptors (LILRAs) play an important role in innate immunity. However, most of the LILRA members have not been characterized in avian species including chickens. The present study is the first attempt at cloning, structural analysis and functional characterization of two LILRAs (LILRA2 and LILRA6) in chickens. Multiple sequence alignments and construction of a phylogenetic tree of chicken LILRA2 and LILRA6 with mammalian proteins revealed high conservation between chicken LILRA2 and LILRA6 and a close relationship between the chicken and mammalian proteins. The mRNA expression of LILRA2 and LILRA6 was high in chicken HD11 macrophages and the small intestine compared to that in several other tissues and cells tested. To examine the function of LILRA2 and LILRA6 in chicken immunity, LILRA2 and LILRA6 were transfected into HD11 cells. Our findings indicated that LILRA2 and LILRA6 are associated with the phosphorylation of Src kinases and SHP2, which play a regulatory role in immune functions. Moreover, LILRA6 associated with and activated MHC class I, ß2-microglobulin and induced the expression of transporters associated with antigen processing but LILRA2 did not. Furthermore, both LILRA2 and LILRA6 activated JAK-STAT, NF-κB, PI3K/AKT and ERK1/2 MAPK signaling pathways and induced Th1-, Th2- and Th17-type cytokines and Toll-like receptors. Collectively, this study indicates that LILRA2 and LILRA6 are essential for macrophage-mediated immune responses and they have the potential to complement the innate and adaptive immune system against pathogens.


Assuntos
Galinhas/imunologia , Citocinas/imunologia , Imunidade Inata , Macrófagos/imunologia , Receptores Imunológicos/imunologia , Sequência de Aminoácidos , Animais , Apresentação de Antígeno , Galinhas/genética , Clonagem Molecular , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Macrófagos/metabolismo , Filogenia , Receptores Imunológicos/química , Receptores Imunológicos/genética , Alinhamento de Sequência , Transdução de Sinais
9.
Asian-Australas J Anim Sci ; 31(9): 1516-1524, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29531188

RESUMO

OBJECTIVE: Defensins are a large family of antimicrobial peptides and components of the innate immune system that invoke an immediate immune response against harmful pathogens. Defensins are classified into alpha-, beta-, and theta-defensins. Avian species only possess beta-defensins (AvBDs), and approximately 14 AvBDs (AvBD1-AvBD14) have been identified in chickens to date. Although substantial information is available on the conservation and phylogenetics, limited information is available on the expression and regulation of AvBD8 in chicken immune tissues and cells. METHODS: We examined AvBD8 protein expression in immune tissues of White Leghorn chickens (WL) by immunohistochemistry and quantitative reverse transcription-polymerase chain reaction (RT-qPCR). In addition, we examined AvBD8 expression in chicken T-, B-, macrophage-, and fibroblast-cell lines and its regulation in these cells after lipopolysaccharide (LPS) treatment by immunocytochemistry and RT-qPCR. RESULTS: Our results showed that chicken AvBD8 protein was strongly expressed in the WL intestine and in macrophages. AvBD8 gene expression was highly upregulated in macrophages treated with different LPS concentrations compared with that in T- and B-cell lines in a time-independent manner. Moreover, chicken AvBD8 strongly interacted with other AvBDs and with other antimicrobial peptides as determined by bioinformatics. CONCLUSION: Our study provides the expression and regulation of chicken AvBD8 protein in immune tissues and cells, which play crucial role in the innate immunity.

10.
Asian-Australas J Anim Sci ; 30(7): 1037-1047, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28111433

RESUMO

OBJECTIVE: Despite an increasing number of investigations into the pathophysiology of necrotic enteritis (NE) disease, etiology of NE-associated diseases, and gene expression profiling of NE-affected tissues, the microRNA (miRNA) profiles of NE-affected poultry have been poorly studied. The aim of this study was to induce NE disease in the genetically disparate Fayoumi chicken lines, and to perform non-coding RNA sequencing in the intestinal mucosal layer. METHODS: NE disease was induced in the Fayoumi chicken lines (M5.1 and M15.2), and non-coding RNA sequencing was performed in the intestinal mucosal layer of both NE-affected and uninfected chickens to examine the differential expression of miRNAs. Next, quantitative real-time polymerase chain reaction (real-time qPCR) was performed to further examine four miRNAs that showed the highest fold differences. Finally, bioinformatics analyses were performed to examine the four miRNAs target genes involvement in the signaling pathways, and to examine their interaction. RESULTS: According to non-coding RNA sequencing, total 50 upregulated miRNAs and 26 downregulated miRNAs were detected in the NE-induced M5.1 chickens. While 32 upregulated miRNAs and 11 downregulated miRNAs were detected in the NE-induced M15.2 chickens. Results of real-time qPCR analysis on the four miRNAs (gga-miR-9-5p, gga-miR-20b-5p, gga-miR-196-5p, and gga-let-7d) were mostly correlated with the results of RNAseq. Overall, gga-miR-20b-5p was significantly downregulated in the NE-induced M5.1 chickens and this was associated with the upregulation of its top-ranking target gene, mitogen-activated protein kinase, kinase 2. Further bioinformatics analyses revealed that 45 of the gene targets of gga-miR-20b-5p were involved in signal transduction and immune system-related pathways, and 35 of these targets were predicted to interact with each other. CONCLUSION: Our study is a novel report of miRNA expression in Fayoumi chickens, and could be very useful in understanding the role of differentially expressed miRNAs in a NE disease model.

11.
Vet Res ; 47(1): 65, 2016 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-27312894

RESUMO

In the present study, we describe the cloning and functional characterization of chicken interleukin 26 (ChIL-26). ChIL-26, a member of the IL-10 cytokine family, induces the production of proinflammatory cytokines by T cells. The ChIL-26 cDNA encodes an 82-amino-acid protein whose amino acid sequence has 22.63, 46.31 and 43.15% homology with human IL-26, pig IL-26 and canary IL-26, respectively. ChIL-26 signals through a heterodimeric receptor complex composed of the IL-20R1 and IL-10R2 chains, which are expressed primarily in the CU91 T cell line as well as CD4(+) and CD8(+) T cells. Recombinant ChIL-26 protein induced Th1 cytokines (IL-16 and IFN-γ), Th2 cytokines (IL-4, IL-6 and IL-10), Th17 cytokines (IL-17A, IL-17D, and IL-17F), and chemokine transcripts (mainly CCL3, CCL4, CCL5, CCL20 and CXCL13) in the CU91 T cell line and in CD4(+) and CD8(+) T cells, however IL-18 was not expressed in the CU91 T cell line. Taken together, the data demonstrates that T cells express the functional ChIL-26 receptor complex and that ChIL-26 modulates T cell proliferation and proinflammatory gene expression. To the best of our knowledge, this is the first report of cloned ChIL-26. We evaluated its functional roles, particularly in the pathogenic costimulation of T cells, which may be significantly associated with the induction of cytokines.


Assuntos
Galinhas/metabolismo , Citocinas/metabolismo , Interleucinas/fisiologia , Linfócitos T/metabolismo , Animais , Western Blotting/veterinária , Canários/genética , Canários/imunologia , Galinhas/imunologia , Clonagem Molecular , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/fisiologia , Humanos , Interleucinas/genética , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Homologia de Sequência , Suínos/genética , Suínos/imunologia , Linfócitos T/imunologia
12.
Asian-Australas J Anim Sci ; 28(10): 1496-511, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26323406

RESUMO

The study aimed to compare the necrotic enteritis (NE)-induced transcriptome differences between the spleens of Marek's disease resistant chicken line 6.3 and susceptible line 7.2 co-infected with Eimeria maxima/Clostridium perfringens using RNA-Seq. Total RNA from the spleens of two chicken lines were used to make libraries, generating 42,736,296 and 42,617,720 usable reads, which were assembled into groups of 29,897 and 29,833 mRNA genes, respectively. The transcriptome changes were investigated using the differentially expressed genes (DEGs) package, which indicated 3,255, 2,468 and 2,234 DEGs of line 6.3, line 7.2, and comparison between two lines, respectively (fold change ≥2, p<0.01). The transcription levels of 14 genes identified were further examined using qRT-PCR. The results of qRT-PCR were consistent with the RNA-seq data. All of the DEGs were analysed using gene ontology terms, the Kyoto Encyclopedia of Genes and Genomes (KEGG) database and the DEGs in each term were found to be more highly expressed in line 6.3 than in line 7.2. RNA-seq analysis indicated 139 immune related genes, 44 CD molecular genes and 150 cytokines genes which were differentially expressed among chicken lines 6.3 and 7.2 (fold change ≥2, p<0.01). Novel mRNA analysis indicated 15,518 novel genes, for which the expression was shown to be higher in line 6.3 than in line 7.2 including some immune-related targets. These findings will help to understand host-pathogen interaction in the spleen and elucidate the mechanism of host genetic control of NE, and provide basis for future studies that can lead to the development of marker-based selection of highly disease-resistant chickens.

13.
Vet Immunol Immunopathol ; 272: 110755, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38643554

RESUMO

Probiotics are essential in the body's nutrients, improving the ratio of meat to meat, immune response, and preventing diseases. In this study, RNA-sequencing (RNA-seq) was used to identify the differentially expressed genes (DEGs), enriched related pathways, and Gene Ontology (GO) terms among blank negative control (NC), supplemented with Bacillus spp. (BS) and commercial probiotic (PC) groups after a 42-day fed supplementation. The results showed that 2005, 1356, and 2189 DEGs were significantly altered in BS vs. NC, PC vs NC, and BS vs PC groups, respectively. On the other hand, 9 DEGs were further validated by qRT-PCR, indicating that the qRT-PCR and RNA-Seq results were more consistent. Therefore, the GO and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of DEGs showed that the DEGs were mainly enriched to metabolism signalling pathways (alpha-linolenic acid metabolism, linoleic acid metabolism, tryptophan metabolism, tyrosine metabolism, ether lipid metabolism, and metabolic pathway, etc) and immune response pathways (cytokine-cytokine receptor interaction, MAPK signalling pathway, and intestinal immune network for IgA production, neuroactive ligand-receptor interaction etc). These results will provide a better understanding of the role of probiotics in chicken development and provide basic information on the genetic development of chickens.


Assuntos
Bacillus , Galinhas , Probióticos , Transdução de Sinais , Baço , Animais , Probióticos/administração & dosagem , Probióticos/farmacologia , Galinhas/imunologia , Galinhas/genética , Galinhas/microbiologia , Baço/metabolismo , Baço/imunologia , Ração Animal/análise , Suplementos Nutricionais , Perfilação da Expressão Gênica/veterinária , Ontologia Genética
14.
Vet Ital ; 60(1)2024 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602499

RESUMO

In October 2020, the first outbreaks of lumpy skin disease (LSD) in Lang Son Province, Vietnam were reported by our laboratory. The disease had rapidly spread to the South, and it was reported in 55 of 63 provinces and cities of Vietnam by the end of 2021. The most economic loss caused by this disease occurred in the north-central region in 2021 where approximately 46,788 LSD virus (LSDV) infected cattle and buffaloes have been reported and 8,976 animals have been culled. However, the information on this pathogen circulating in this region is missing. Here, we describe the molecular characterization of LSDV circulating in north-central Vietnam in 2021 and early 2022. In total, 155 LSDV samples were collected during this period and three of these samples from each province were further characterized by Sanger sequencing analysis based on three key maker genes (GPCR, RPO30, and p32). Sequence comparison and phylogenetic analysis based on GPCR, RPO30, and p32 genes indicated that LSDV strains circulating in north-central Vietnam are closely related to previously reported strains in Vietnam regions which bordered China and all LSDV strains were 100% identical. These results show the importance of continuous monitoring and characterization of circulating LSDV strains and are important for vaccine development for the control and eradication of LSD in Vietnam.


Assuntos
Vírus da Doença Nodular Cutânea , Animais , Bovinos , Vírus da Doença Nodular Cutânea/genética , Filogenia , Vietnã/epidemiologia , Búfalos , Surtos de Doenças/veterinária
15.
Discov Med ; 36(183): 690-698, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38665018

RESUMO

BACKGROUND: Coronavirus disease 2019 (COVID-19) patients with sleep disorders may be at greater risk for respiratory exacerbation or death compared to those without. After being infected with COVID-19, patients have many symptoms related to sleep disorders, especially those with severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection. This study aimed to evaluate sleep disturbances in patients with severe SARS-CoV-2 infection who were treated in the Intensive Care Unit (ICU). METHODS: This cross-sectional study used the questionnaire provided by the Vietnam Sleep Disorder Study (ViSDiS) research, elaborated by the Vietnam Society of Sleep Medicine (VSSM). Seventy-seven COVID-19 patients were included. RESULTS: There was a significant difference in sleep status before and after SARS-CoV-2 infection among participants. Up to 83% of them reported experiencing insomnia after illness, 60% reported having frequent nightmares, and more than half of participants reported nocturia (p < 0.0001). More than 81.8% of patients with severe SARS-CoV-2 infection were unsatisfied with their sleep quality during hospitalization After SARS-CoV-2 infection, only 2.6% of participants felt they had good quality sleep (p < 0.0001). The majority of patients suffered from fatigue after SARS-CoV-2 infection, including a lack of energy, feeling heaviness in their limbs, aggravation of pre-existing sleep disorders, idleness, constant fatigue throughout the day, and difficulty concentrating. CONCLUSION: Sleep problems are highly prevalence among hospitalized patients with severe COVID-19 in the ICU. Healthcare providers should pay attention to sleep problems and their associated symptoms to initiate appropriate treatment to improve severe COVID-19 patients' health status and minimize the risk of death.


Assuntos
COVID-19 , Unidades de Terapia Intensiva , SARS-CoV-2 , Transtornos do Sono-Vigília , Humanos , COVID-19/epidemiologia , COVID-19/complicações , COVID-19/terapia , Masculino , Feminino , Unidades de Terapia Intensiva/estatística & dados numéricos , Pessoa de Meia-Idade , Vietnã/epidemiologia , Estudos Transversais , Transtornos do Sono-Vigília/epidemiologia , Idoso , Adulto , Inquéritos e Questionários , Qualidade do Sono , Índice de Gravidade de Doença
16.
J Vet Sci ; 24(1): e13, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36726278

RESUMO

BACKGROUND: Highly pathogenic avian influenza viruses (HPAIVs) is an extremely contagious and high mortality rates in chickens resulting in substantial economic impact on the poultry sector. Therefore, it is necessary to elucidate the pathogenic mechanism of HPAIV for infection control. OBJECTIVE: Gene set enrichment analysis (GSEA) can effectively avoid the limitations of subjective screening for differential gene expression. Therefore, we performed GSEA to compare HPAI-infected resistant and susceptible Ri chicken lines. METHODS: The Ri chickens Mx(A)/BF2(B21) were chosen as resistant, and the chickens Mx(G)/BF2(B13) were selected as susceptible by genotyping the Mx and BF2 genes. The tracheal tissues of HPAIV H5N1 infected chickens were collected for RNA sequencing followed by GSEA analysis to define gene subsets to elucidate the sequencing results. RESULTS: We identified four differentially expressed pathways, which were immune-related pathways with a total of 78 genes. The expression levels of cytokines (IL-1ß, IL-6, IL-12), chemokines (CCL4 and CCL5), type interferons and their receptors (IFN-ß, IFNAR1, IFNAR2, and IFNGR1), Jak-STAT signaling pathway genes (STAT1, STAT2, and JAK1), MHC class I and II and their co-stimulatory molecules (CD80, CD86, CD40, DMB2, BLB2, and B2M), and interferon stimulated genes (EIF2AK2 and EIF2AK1) in resistant chickens were higher than those in susceptible chickens. CONCLUSIONS: Resistant Ri chickens exhibit a stronger antiviral response to HPAIV H5N1 compared with susceptible chickens. Our findings provide insights into the immune responses of genetically disparate chickens against HPAIV.


Assuntos
Virus da Influenza A Subtipo H5N1 , Influenza Aviária , Animais , Galinhas , Virus da Influenza A Subtipo H5N1/genética , Antivirais , Expressão Gênica
17.
Vet Res Commun ; 47(4): 2005-2016, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37382734

RESUMO

Preliminary information about LSD virus isolated from the first outbreaks in Vietnam has been reported by our laboratory. In the current study, LSDV strain, LSDV/Vietnam/Langson/HL01(HL01) was further analyzed to provide a better understanding of this viral pathogen. HL01 LSDV strain was propagated at MOI 0.01 in MDBK cells and then given to cattle at dose of 106.5 TCID50/ml (2ml/animal). The production of proinflammatory (IFN-γ, IL-1α, and TNF-α) and anti-inflammatory (IL-6, IL-10, and TGF-ß1) cytokines were measured by real-time PCR, both In vitro and In vivo. The results demonstrated that HL01 strain caused the typical signs of LSD and LSDV In vitro and In vivo, respectively suggesting a virulent field LSDV strain. Additionally, different cytokine profiles were observed in these In vitro and In vivo studies. In MDBK cells, different cytokines profiles were observed in two phases: in the early phase, the expression levels of all examined cytokines were significantly increased at 6 h (p < 0.05). In the later phase, the peak levels of the cytokine secretion were recognized from 72 to 96 h, with the exception of IL-1α when compared to controls. In cattle, the expression levels of all six cytokines were significantly higher at day 7 following LSDV challenge (p < 0.05) when compared to controls, especially expression levels of TGF-ß1 and IL-10. These findings suggest the important roles of these cytokines in protection against LSDV infections. Additionally, the data from diverse cytokine profiles followed by this LSDV strain challenge provides key understanding of the underlying cellular immune mechanisms in the host against LSDV infection In vitro and In vivo.


Assuntos
Doenças dos Bovinos , Doença Nodular Cutânea , Vírus da Doença Nodular Cutânea , Animais , Bovinos , Doença Nodular Cutânea/epidemiologia , Interleucina-10 , Vietnã/epidemiologia , Surtos de Doenças/veterinária , Doenças dos Bovinos/epidemiologia
18.
J Anim Sci Technol ; 65(4): 838-855, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37970505

RESUMO

The highly pathogenic avian influenza (HPAI) virus triggers infectious diseases, resulting in pulmonary damage and high mortality in domestic poultry worldwide. This study aimed to analyze miRNA expression profiles after infection with the HPAI H5N1 virus in resistant and susceptible lines of Ri chickens.For this purpose, resistant and susceptible lines of Vietnamese Ri chicken were used based on the A/G allele of Mx and BF2 genes. These genes are responsible for innate antiviral activity and were selected to determine differentially expressed (DE) miRNAs in HPAI-infected chicken lines using small RNA sequencing. A total of 44 miRNAs were DE after 3 days of infection with the H5N1 virus. Computational program analysis indicated the candidate target genes for DE miRNAs to possess significant functions related to cytokines, chemokines, MAPK signaling pathway, ErBb signaling pathway, and Wnt signaling pathway. Several DE miRNA-mRNA matches were suggested to play crucial roles in mediating immune functions against viral evasion. These results revealed the potential regulatory roles of miRNAs in the immune response of the two Ri chicken lines against HPAI H5N1 virus infection in the lungs.

19.
J Anim Sci Technol ; 65(1): 183-196, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37093904

RESUMO

Interferon-alpha inducible protein 6 (IFI6) is an interferon-stimulated gene (ISG), belonging to the FAM14 family of proteins and is localized in the mitochondrial membrane, where it plays a role in apoptosis. Transcriptional regulation of this gene is poorly understood in the context of inflammation by intracellular nucleic acid-sensing receptors and pathological conditions caused by viral infection. In this study, chicken IFI6 (chIFI6) was identified and studied for its molecular features and transcriptional regulation in chicken cells and tissues, i.e., lungs, spleens, and tracheas from highly pathogenic avian influenza virus (HPAIV)-infected chickens. The chIFI6-coding sequences contained 1638 nucleotides encoding 107 amino acids in three exons, whereas the duck IFI6-coding sequences contained 495 nucleotides encoding 107 amino acids. IFI6 proteins from chickens, ducks, and quail contain an IF6/IF27-like superfamily domain. Expression of chIFI6 was higher in HPAIV-infected White Leghorn chicken lungs, spleens, and tracheas than in mock-infected controls. TLR3 signals regulate the transcription of chIFI6 in chicken DF-1 cells via the NF-κB and JNK signaling pathways, indicating that multiple signaling pathways differentially contribute to the transcription of chIFI6. Further research is needed to unravel the molecular mechanisms underlying IFI6 transcription, as well as the involvement of chIFI6 in the pathogenesis of HPAIV in chickens.

20.
Poult Sci ; 102(2): 102399, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36586293

RESUMO

Interleukin-1 receptor type 2 (IL1R2) is a decoy receptor for exogenous IL-1. However, its functional role in chicken immunity is poorly understood. Herein, chicken IL-1R2 (chIL-1R2) was identified and functionally characterized in vivo and in vitro. The chIL-1R2 coding sequence includes 1,236 nucleotides encoding 412 amino acids, is highly conserved, and has a close relationship with its mammalian counterpart. Its extracellular region has three Ig-like domains but no TIR domain for intracellular signaling. Using ELISA, the recombinant chIL-1R2 protein was demonstrated to specifically bind to the chicken IL-1ß. ChIL-1R2 mRNA expression was shown to be higher in the spleen, lung, kidney, small intestine, and liver. The expression of chIL-1R2 and chIL-1R1 was significantly upregulated in DF-1 cells treated with poly (I:C), but significantly downregulated in the presence of NF-κB, JNK, and MEK inhibitors, indicating that the NF-κB, JNK, and MEK signaling pathways are required for the transcriptional regulation of chIL-1R1 and chIL-1R2 expression. It is worth noting that while the p30 MAPK pathway was required for chIL-1R1 expression, it was not required for chIL-1R2 expression. Furthermore, chIL-1R2 expression increased as early as day 1, and then significantly decreased until day 3, while chIL-1R1 was dramatically upregulated in four organs of chickens infected with the highly pathogenic avian influenza virus (HPAIV). These findings indicate that chIL-1R1 and chIL-1R2 may play a crucial in innate and adaptive immune responses toward HPAIV infection. In summary the present study showed that chIL-1R2 binds to chIL-1ß antibody. ChIL-1R2 expression can be induced by a viral infection, and may be regulated through NF-κB/JNK/MEK-mediated signaling pathways.


Assuntos
Galinhas , NF-kappa B , Animais , Galinhas/genética , Interleucinas , Mamíferos , Quinases de Proteína Quinase Ativadas por Mitógeno , Receptores de Interleucina-1 , Receptores Tipo II de Interleucina-1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA