Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Phys Chem Chem Phys ; 26(3): 1658-1670, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38009441

RESUMO

Anion exchange membrane fuel cells (AEMFCs) hold the key to future mass commercialisation of fuel cell technology, even though currently, AEMFCs perform less optimally than proton exchange membrane fuel cells (PEMFCs). Unlike PEMFCs, AEMFCs have demonstrated the capability to operate independently of Pt group metal-based catalysts. Water characterization inside the membrane is one factor that significantly influences the performance of AEMFCs. In this paper, different water species inside an anion exchange membrane (AEM), QPAF-4, developed at the University of Yamanashi, were studied for the first time using micro-Raman spectroscopy. Spectra of pure water, alkaline solutions, and calculations based on density functional theory were used to identify the water species in the AEM. The OH stretching band was deconvoluted into nine unique Gaussian bands. All the hydrogen-bonded OH species increased steadily with increasing humidity, while the CH and non-H-bonded OH remained relatively constant. These results confirm the viability of micro-Raman spectroscopy in studying the various water-related species in AEMs. The availability of this technique is an essential prerequisite in improving the ionic conductivity and effectively solving the persisting durability challenge facing AEMFCs, thus hastening the possibility of mass commercialisation of fuel cells.

2.
Phys Chem Chem Phys ; 21(6): 2861-2865, 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30681092

RESUMO

We, for the first time, demonstrate high electrocatalytic activity for the hydrogen evolution reaction (HER) on PtFe alloy nanoparticles with stabilized Pt-skin layers supported on carbon black (PtxAL-PtFe/C), which allows the reduction of Pt loading to be lowered to 1/20 compared with a conventional Pt black cathode in proton exchange membrane water electrolysis (PEMWE). The area-specific HER activity of PtxAL-PtFe/C was found to be ca. 2 times higher than that of commercial Pt/C at 80 °C and -0.02 V vs. RHE. PtxAL-PtFe/C exhibited the additional important advantage of suppressed H2O2 production during the HER in the presence of O2, which inevitably diffuses from the anode in PEMWE. Both the excellent HER performance and low H2O2 production are attributed to the lower adsorption energies of atomic hydrogen on Pt-skin surfaces, as revealed by DFT calculations.

3.
Langmuir ; 34(45): 13558-13564, 2018 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-30378419

RESUMO

The effects of the concentration of H2SO4 ([H2SO4]), which is the major decomposition product of polymer electrolyte membranes during the operation of fuel cells, on the performance of stabilized Pt skin/PtCo alloy nanocatalysts supported on high-surface-area carbon (PtxAL-PtCo/C) were investigated. Kinetically controlled activities for the oxygen reduction reaction (ORR) and the H2O2 yields ( P(H2O2)) on the PtxAL-PtCo/C were examined based on hydrodynamic voltammograms in O2-saturated 0.1 M HClO4 + X M H2SO4 ( X = 0 to 5 × 10-2) by use of the channel flow double electrode method at temperatures between 30 and 80 °C. At X ≤ 10-6 (1 µM) and all temperatures examined, the apparent ORR rate constants kapp@0.85 V (per unit electrochemically active surface area) on PtxAL-PtCo/C at 0.85 V vs the reversible hydrogen electrode (RHE) were nearly identical with those in sulfate-free 0.1 M HClO4 and were at least twice as high as those on a commercial Pt/C catalyst (c-Pt/C). The values of kapp@0.85 V on both PtxAL-PtCo/C and c-Pt/C decreased linearly with log[H2SO4] in the concentration range 10-6 < X ≤ 5 × 10-2. The detrimental effect by H2SO4 was less pronounced on PtxAL-PtCo/C than on c-Pt/C at high temperatures; the kapp@0.85 V value at X = 5 × 10-2 on the former at 80 °C was maintained as high as 87%, whereas that of the latter was 66% (34% loss). The values of peroxide production percentage P(H2O2) on PtxAL-PtCo/C at 80 °C were nearly constant (ca. 0.22% at 0.76 V vs RHE) up to X = 5 × 10-2. These superior characteristics are ascribed to weakened adsorption of sulfate on the Pt skin surface, supported by DFT calculations, which provides the great advantage of robustness in the presence of impurities, maintaining active sites for the ORR during the PEFC operation.

4.
J Am Chem Soc ; 135(4): 1476-90, 2013 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-23294135

RESUMO

We sought to establish a new standard for direct comparison of electrocatalytic activity with surface structure using in situ scanning tunneling microscopy (STM) by examining the electrooxidation of CO in a CO-saturated solution on Pt(111) electrodes with steps, with combined electrochemical measurements, in situ STM, and density functional theory (DFT). On pristine Pt(111) surfaces with initially disordered (111) steps, CO oxidation commences at least 0.5 V lower than that for the main oxidation peak at ca. 0.8-1.0 V vs the reversible hydrogen electrode in aqueous perchloric acid solution. As the potential was cycled between 0.07 and 0.95 V, the CO oxidation activity gradually decreased until only the main oxidation peak remained. In situ STM showed that the steps became perfectly straight. A plausible reason for the preference for (111) steps in the presence of CO is suggested by DFT calculations. In contrast, on a pristine Pt(111) surface with rather straight (100) steps, the low-potential CO oxidation activity was less than that for the pristine, uncycled (111) steps. As the potential was cycled, the activity also decreased greatly. Interestingly, after cycling, in situ STM showed that (111) microsteps were introduced at the (100) steps. Thus, potential cycling in the presence of dissolved CO highly favors formation of (111) steps. The CO oxidation activity in the low-potential region decreased in the following order: disordered (111) steps > straight (100) steps > (100) steps with local (111) microsteps ≈ straight (111) steps.


Assuntos
Monóxido de Carbono/química , Platina/química , Eletrodos , Microscopia de Tunelamento , Estrutura Molecular , Oxirredução , Teoria Quântica , Propriedades de Superfície
5.
Phys Chem Chem Phys ; 15(27): 11236-47, 2013 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-23715296

RESUMO

In polymer electrolyte fuel cells, it is essential to minimize Pt loading, particularly at the cathode, without serious loss of performance. From this point of view, we will report an advanced concept for the design of high performance catalysts and membrane-electrode assemblies (MEAs): first, the evaluation of Pt particle distributions on both the interior and exterior walls of various types of carbon black (CB) particles used as supports with respect to the "effective surface (ES)"; second, control of both size and location of Pt particles by means of a new preparation method (nanocapsule method); and finally, a new evaluation method for the properties of MEAs based on the Pt utilization (UPt), mass activity (MA), and effectiveness of Pt (EfPt), based on the ES concept. The amounts of Pt catalyst particles located in the CB nanopores were directly evaluated using the transmission electron microscopy, scanning electron microscopy and corresponding three-dimensional images. By use of the nanocapsule method and optimization of the ionomer, increased MA and EfPt values for the MEA were achieved. The improvement in the cathode performance can be attributed to the sharp particle-size distribution for Pt and the highly uniform dispersion on the exterior surface of graphitized carbon black (GCB) supports.


Assuntos
Fontes de Energia Elétrica , Nanopartículas Metálicas/química , Platina/química , Polímeros/química , Eletrólitos/química , Tamanho da Partícula , Propriedades de Superfície
6.
ACS Omega ; 8(14): 13068-13077, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37065081

RESUMO

The rational design of efficient and low-cost electrocatalysts based on earth-abundant materials is imperative for large-scale production of hydrogen by water electrolysis. Here we present a strategy to prepare highly active catalyst materials through modifying the crystallinity of the surface/interface of strongly coupled transition metal-metal oxides. We have thermally activated the catalysts to construct amorphous/crystalline Ni-Fe oxide interfaced with a conductive Ni-Fe alloy and systematically investigated their electrocatalytic performance toward the hydrogen evolution and oxygen evolution reactions (HER and OER) in alkaline solution. It was found that the Ni-Fe/oxide material with a crystalline surface oxide phase showed remarkably superior HER activity in comparison with its amorphous or poorly crystalline counterpart. In contrast, interestingly, the amorphous/poorly crystalline oxide significantly facilitated the OER activity in comparison with the more crystalline counterpart. On one hand, the higher HER activity can be ascribed to a favorable platform for water dissociation and H-H bond formation, enabled by the unique crystalline metal/oxide structure. On the other hand, the enhanced OER catalysis on the amorphous Ni-Fe oxide surfaces can be attributed to the facile activation to form the active oxyhydroxides under OER conditions. Both are explained based on density functional theory calculations. These results thus shed light onto the role of crystallinity in the HER and OER catalysis on heterostructured Ni-Fe/oxide catalysts and provide guidance for the design of new catalysts for efficient water electrolysis.

7.
ACS Omega ; 7(16): 13577-13587, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35559206

RESUMO

An anion-exchange electrolyte membrane, QPAF(C6)-4, polymerized with hydrophobic 1,4'-bis(3-chlorophenyl)perfluorohexane and hydrophilic (6,6'-(2,7-dichloro-9H-fluorene-9.9-diyl)bis(N,N-dimethylhexan-1-amine) is physically flexible and chemically stable. The drawbacks are relatively large water swelling and lower OH- conductivity at higher water uptakes, which are considered to be due to the entanglement of the flexible hydrophobic structure of the membrane. In this study, a QPAF(C4)-4 membrane was newly synthesized with shortened hydrophobic fluoroalkyl chains. Unexpectedly, QPAF(C4)-4 showed a higher water uptake and a lower bulk/surface conductivity than QPAF(C6)-4 possibly due to the decrease in hydrophobicity with a smaller number of fluorine atoms. The thermal stability of QPAF(C4)-4 was higher than that of QAPF(C6)-4, possibly due to the rigidity of the QAPF(C4)-4 structure. A higher mechanical strength of QAPF(C6)-4 than that of QPAF(C4)-4 could be explained by the larger interactions between molecules, as shown in the ultraviolet-visible spectrum. The interactions of molecules were understood in more detail with density functional theory calculations. Both the chemical structures of the polymers and the arrangements of the polymers in the membranes were found to influence the membrane properties.

8.
J Nanosci Nanotechnol ; 11(4): 3692-5, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21776756

RESUMO

A novel chemical method has been developed for the fabrication of Ag nanoparticles-coated TiO2 nanofiber composites. The method involves dispersion of TiO2 nanofibers in silver salt solution under ultrasonication, followed by addition of sodium citrate as a reducing agent. The Ag-coated TiO2 composites were characterized by high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD) and X-ray photoelectron microscopy (XPS). Furthermore, the photocatalytic performance was evaluated by the photocatalytic degradation of methyl orange under UV-light irradiation. It was found that the heterogeneous Ag-TiO2 composite showed a higher activity than the pure TiO2 nanofiber; the enhanced activity can be attributed to the excellent distribution and interaction of Ag nanoparticles with the TiO2 nanofiber support. A plausible mechanism for the formation of the Ag-coated TiO2 composite and reasons for the enhancement of photocatalytic activity are also discussed.


Assuntos
Cristalização/métodos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Prata/química , Titânio/química , Catálise , Luz , Substâncias Macromoleculares/química , Substâncias Macromoleculares/efeitos da radiação , Teste de Materiais , Conformação Molecular/efeitos da radiação , Nanoestruturas/efeitos da radiação , Tamanho da Partícula , Prata/efeitos da radiação , Propriedades de Superfície/efeitos da radiação , Titânio/efeitos da radiação
9.
Langmuir ; 26(7): 4639-41, 2010 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-20229990

RESUMO

A novel optically transparent membrane composed of porphyrin-clay mineral complexes was developed. Reversible solvatochromism behavior of the membrane was successfully observed, due to an orientation change of porphyrin in the clay interlayer space. The lambda(max) value of porphyrin was 423 nm in acetone, while it was 464 nm in hexane. The color of the membrane changed from pink to green through to brown, when Sn porphyrin was used. The mechanism for solvatochromism in the present system is very unique compared to those for conventionally reported materials.

10.
Phys Chem Chem Phys ; 12(28): 7911-6, 2010 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-20505886

RESUMO

The wettability changes of TiO(2) surface, photo-induced hydrophilic conversion and back-reaction in the dark, were evaluated using rutile (100) and (001) single crystals with diamond polishing (DP) and chemical mechanical polishing (CMP) treatments. Dynamic hardness measurements indicated that the DP surface had a residual compressive stress; however, the CMP surface did not. The rate of hydrophilic conversion was greatly suppressed (approximately one fourteenth) on the DP surface compared to the CMP surface, showing that the photoinduced hydrophilicity was greatly suppressed on the surface with compressive stress although the number of photogenerated carriers at the DP surface was estimated to decrease to only ca. half that at the CMP surface. In addition, when a heat treatment relaxed the compressive stress, the hydrophilicity was greatly increased. The back-reaction in the dark, i.e., the degradation of the photo-produced hydrophilic state, was ca. two times faster on the DP surface with compressive stress. The results strongly suggest that the pressure effect caused by the compressive stress could be the main reason for the degradation of the hydrophilicity and acceleration of the back reaction.

11.
J Nanosci Nanotechnol ; 10(12): 7951-7, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21121282

RESUMO

Nanofibrous TiO2-core/conjugated polymer-sheath composite nanocables were synthesized by in-situ chemical oxidative polymerization of aniline with oxidant in the presence of TiO, nanofibers prepared through an electrospinning process. During the polymerization process, aniline molecules were adsorbed on the surface of TiO2. Upon the addition of oxidant, the polymerization of aniline takes place on the surface of the TiO2 nanofibers and polyaniline (PANI) is gradually deposited on their surface. The resulting TiO2-PANI nanocomposites have a coaxial nanocable structure. The morphological and structural properties of the composite nanocables were analyzed by using high resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier-transform infrared (FT-IR) and UV-visible spectroscopy (UV-vis), respectively. The HRTEM images proved that PANI (20 nm thickness) covered the surface of the TiO2 nanofibers. Also, the photocatalytic activity for the degradation of organic dyes on fibrous photocatalysts under UV-light was studied. The photocatalytic experiments showed that dye could be degraded more efficiently on the TiO2-PANI composite nanocables than on pure TiO2, due to the charge transfer from PANI to TiO2. The method for the synthesis of these unique structured composite nanocables is simple, rapid and reproducible. This facile method may be developed to produce multifunctional nanocomposites of various polymers with metal oxide fibers on a large scale for various technological applications such as sensors, solar cells, and catalysts.

12.
ACS Omega ; 3(1): 154-158, 2018 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-31457883

RESUMO

By the use of in situ scanning tunneling microscopy and surface X-ray scattering techniques, we have clarified the surface structure and the layer-by-layer compositions of a Pt skin/Pt3Co(111) single-crystal electrode, which exhibited extremely high activity for the oxygen reduction reaction. The topmost layer was found to be an atomically flat Pt skin with (1 × 1) structure. Cobalt was enriched in the second layer up to 98 atom %, whereas the Co content in the third and fourth layers was slightly smaller than that in the bulk. By X-ray photoelectron spectroscopy, the Co in the subsurface layers was found to be positively charged, which is consistent with an electronic modification of the Pt skin. The extremely high activity at the Pt skin/Pt3Co(111) single crystal is correlated with this specific surface structure.

13.
Chem Commun (Camb) ; (46): 4949-51, 2007 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-18361379

RESUMO

A transparent superhydrophobic TiO2 film, prepared by spin-coating a TiO2 slurry on a glass substrate and modifying the resultant TiO2 film with fluoroalkylsilane molecules, was patterned by illumination with ultraviolet light through a photomask, producing a superhydrophobic/superhydrophilic surface micropattern with very small superhydrophilic areas, which we were able to selectively fill with alginate hydrogel.


Assuntos
Titânio/química , Alginatos/química , Catálise , Fenômenos Químicos , Físico-Química , Hidrogéis/química , Microscopia Eletrônica de Varredura , Silanos/química , Propriedades de Superfície , Titânio/efeitos da radiação , Raios Ultravioleta
14.
Chem Commun (Camb) ; (43): 4483-5, 2006 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-17283792

RESUMO

The electrospinning method is employed to prepare a fibrous TiO2-SiO2 (Ti : Si = 1 : 2) nanocomposite photocatalyst, in which Degussa P25 T i O2 nanoparticles are embedded inthe body of SiO2 fibers and which shows good photocatalytic activity due to its 3-D open structure, as evidenced by photocatalytic reduction of silver ions and decomposition of acetaldehyde.

15.
Chem Commun (Camb) ; (5): 486-7, 2002 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-12120553

RESUMO

An extremely strong oxidant, ferrate (Fe(VI) or FeO4(2-), has been produced electrochemically in an acidic aqueous medium for the first time.

16.
ACS Appl Mater Interfaces ; 4(2): 1134-47, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22270177

RESUMO

Diamond in nanoparticle form is a promising material that can be used as a robust and chemically stable catalyst support in fuel cells. It has been studied and characterized physically and electrochemically, in its thin film and powder forms, as reported in the literature. In the present work, the electrochemical properties of undoped and boron-doped diamond nanoparticle electrodes, fabricated using the ink-paste method, were investigated. Methanol oxidation experiments were carried out in both half-cell and full fuel cell modes. Platinum and ruthenium nanoparticles were chemically deposited on undoped and boron doped diamond nanoparticles through the use of NaBH(4) as reducing agent and sodium dodecyl benzene sulfonate (SDBS) as a surfactant. Before and after the reduction process, samples were characterized by electron microscopy and spectroscopic techniques. The ink-paste method was also used to prepare the membrane electrode assembly with Pt and Pt-Ru modified undoped and boron-doped diamond nanoparticle catalytic systems, to perform the electrochemical experiments in a direct methanol fuel cell system. The results obtained demonstrate that diamond supported catalyst nanomaterials are promising for methanol fuel cells.

17.
Faraday Discuss ; 155: 145-63; discussion 207-22, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22470972

RESUMO

The reaction mechanism of the highly efficient (phi = 0.60), selective photochemical epoxidation of alkenes sensitized by CO-coordinated tetra(2,4,6-trimethyl)phenylporphyrinatoruthenium(II) (Ru(II)TMP(CO)), with water acting both as an electron and oxygen atom donor, was investigated. The steady-state light irradiation of the reaction mixture indicated the formation of the Ru(II)TMP (CO) cation radical under neutral conditions, which was effectively trapped by an hydroxide ion to regenerate the starting sensitizer. By means of a laser flash photolysis experiment, the formation of the cation radical as the primary process from the triplet excited state of Ru(II)TMP(CO) was clearly observed. Four kinds of transients were detected in completely different ranges of the delay time: the excited triplet state of Ru(II)TMP(CO) [delay time region <20 micros], the cation radical of Ru(II)TMP(CO)(CH3CN) [20-50 micros], the hydroxyl-coordinated Intermediate [I] [50-200 micros], and the cyclohexane-attached Intermediate [II] [200 micros-8 ms]. A reaction mechanism was revealed that involves RuTMP(CO) cation radical formation from the triplet excited state of the sensitizer, followed by attack of an hydroxide ion to form an hydroxyl-coordinated Ru-porphyrin (Intermediate [I]) and subsequent reaction with cyclohexene to form Intermediate [II]. The kinetics for each step of the successive processes was carefully analyzed and their rate constants were determined. The two-electron oxidation of water by one-photon irradiation, as revealed in the photochemical epoxidation, is proposed to be one of the more promising candidates to get through the bottleneck of water oxidation in artificial photosynthesis.


Assuntos
Metaloporfirinas/química , Oxigênio/química , Fotoquímica , Fótons , Fotossíntese , Água/química , Alcenos/química , Monóxido de Carbono/química , Monóxido de Carbono/metabolismo , Cátions , Complexos de Coordenação/química , Complexos de Coordenação/metabolismo , Elétrons , Concentração de Íons de Hidrogênio , Cinética , Luz , Metaloporfirinas/metabolismo , Oxirredução/efeitos da radiação , Oxigênio/metabolismo , Rutênio/química , Rutênio/metabolismo , Água/metabolismo
18.
ACS Appl Mater Interfaces ; 3(2): 177-82, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21214209

RESUMO

Conductive diamond whiskers were fabricated by maskless oxygen plasma etching on highly boron-doped diamond substrates. The effects of the etching conditions and the boron concentration in diamond on the whisker morphology and overall substrate coverage were investigated. High boron-doping levels (greater than 8.4 × 10(20) cm(-3)) are crucial for the formation of the nanosized, densely packed whiskers with diameter of ca. 20 nm, length of ca. 200 nm, and density of ca. 3.8 × 10(10) cm(-2) under optimal oxygen plasma etching conditions (10 min at a chamber pressure of 20 Pa). Confocal Raman mapping and scanning electron microscopy illustrate that the boron distribution in the diamond surface region is consistent with the distribution of whisker sites. The boron dopant atoms in the diamond appear to lead to the initial fine column formation. This simple method could provide a facile, cost-effective means for the preparation of conductive nanostructured diamond materials for electrochemical applications as well as electron emission devices.

19.
Water Res ; 44(3): 904-10, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19863989

RESUMO

A high-performance, environmentally friendly water treatment system was developed. The system consists mainly of an electrochemical and a photocatalytic oxidation unit, with a boron-doped diamond (BDD) electrode and TiO(2) photocatalyst, respectively. All electric power for the mechanical systems and the electrolysis was able to be provided by photovoltaic cells. Thus, this system is totally driven by solar energy. The treatment ability of the electrolysis and photocatalysis units was investigated by phenol degradation kinetics. An observed rate constant of 5.1 x 10(-3)dm(3)cm(-2)h(-1) was calculated by pseudo-first-order kinetic analysis for the electrolysis, and a Langmuir-Hinshelwood rate constant of 5.6 microM(-1)min(-1) was calculated by kinetic analysis of the photocatalysis. According to previous reports, these values are sufficient for the mineralization of phenol. In a treatment test of river water samples, large amounts of chemical and biological contaminants were totally wet-incinerated by the system. This system could provide 12L/day of drinking water from the Tama River using only solar energy. Therefore, this system may be useful for supplying drinking water during a disaster.


Assuntos
Boro/química , Diamante/química , Técnicas Eletroquímicas/métodos , Luz Solar , Titânio/química , Purificação da Água/métodos , Bactérias/isolamento & purificação , Catálise/efeitos da radiação , Custos e Análise de Custo , Técnicas Eletroquímicas/economia , Eletrodos , Eletrólise/economia , Japão , Oxigênio/isolamento & purificação , Rios/química , Soluções , Fatores de Tempo , Microbiologia da Água , Purificação da Água/economia
20.
Langmuir ; 25(17): 10329-36, 2009 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-19634868

RESUMO

In the present investigation, electrochemical deposition of platinum particles was carried out on boron doped diamond (BDD) films by using cyclic voltammetry at different potential sweep rates while maintaining the Pt concentration and number of potential cycles during the deposition as constant for all samples. The BDD film surfaces were studied using Raman spectroscopy, X-ray diffraction, and scanning electrochemical microscopy. The deposited particles were characterized by scanning electron microscopy/X-ray energy dispersive analysis, X-ray photoelectron spectroscopy, and cyclic voltammetry before and after methanol oxidation. The platinum nanoparticles are found to be selectively electrodeposited on the (111) facets of the BDD. In addition, the location of the Pt particles on the diamond facets was affected by the potential sweep rate. For higher sweep rates, the particle size was dependent on the facet on which the particles are electrodeposited with smooth (110) facets exhibiting a smaller number of particles but with a larger particle diameter. After methanol oxidation studies using cyclic voltammetry and controlled potential electrolysis for several hours, the platinum particles remained attached to the (111) facets of the BDD, while the particles on the (110) facets of the BDD became agglomerated along grain boundaries. Functional groups present on the (111) facet of the diamond surface play an important role on the stability of the particles attached to the diamond surface. After methanol oxidation, the particles deposited on other facets appeared to lose their adhesion leading to agglomeration on the grain boundaries. BDD appears to be a promising electrocatalyst support material that can help to resist platinum nanoparticle agglomeration in direct methanol and other low temperature fuel cell applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA