Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(17)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34502215

RESUMO

The tumor suppressor p53 is critical for preventing neoplastic transformation and tumor progression. Inappropriate activation of p53, however, has been observed in a number of human inherited disorders that most often affect development of the brain, craniofacial region, limb skeleton, and hematopoietic system. Genes related to these developmental disorders are essentially involved in transcriptional regulation/chromatin remodeling, rRNA metabolism, DNA damage-repair pathways, telomere maintenance, and centrosome biogenesis. Perturbation of these activities or cellular processes may result in p53 accumulation in cell cultures, animal models, and perhaps humans as well. Mouse models of several p53 activation-associated disorders essentially recapitulate human traits, and inactivation of p53 in these models can alleviate disorder-related phenotypes. In the present review, we focus on how dysfunction of the aforementioned biological processes causes developmental defects via excessive p53 activation. Notably, several disease-related genes exert a pleiotropic effect on those cellular processes, which may modulate the magnitude of p53 activation and establish or disrupt regulatory loops. Finally, we discuss potential therapeutic strategies for genetic disorders associated with p53 misactivation.


Assuntos
Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/patologia , Mutação , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Animais , Transformação Celular Neoplásica , Humanos , Fenótipo , Transdução de Sinais
2.
Commun Biol ; 6(1): 910, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37670183

RESUMO

A molecular and functional link between neurotrophin signaling and cerebellar foliation is lacking. Here we show that constitutive knockout of two homologous genes encoding the RNA binding protein RBM4 results in foliation defects at cerebellar lobules VI-VII and delayed motor learning in mice. Moreover, the features of Rbm4 double knockout (dKO), including impaired differentiation of cerebellar granule cells and dendritic arborization of Purkinje cells, are reminiscent of neurotrophin deficiency. Loss of RBM4 indeed reduced brain-derived neurotrophic factor (BDNF). RBM4 promoted the expression of BDNF and full-length TrkB, implicating RBM4 in efficient BDNF-TrkB signaling. Finally, prenatal supplementation with 7,8-dihydroxyflavone, a TrkB agonist, restored granule cell differentiation, Purkinje cell dendritic complexity and foliation-the intercrural fissure in particular-in the neonatal cerebellum of Rbm4dKO mice, which also showed improved motor learning in adulthood. This study provides evidence that prenatal activation of TrkB signaling ameliorates cerebellar malformation caused by BDNF deficiency.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Malformações do Sistema Nervoso , Animais , Feminino , Camundongos , Gravidez , Diferenciação Celular , Cerebelo , Grânulos Citoplasmáticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA