Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Opt Lett ; 47(6): 1537-1540, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35290358

RESUMO

Two-stage multipass-cell compression of a fiber-chirped-pulse amplifier system to the few-cycle regime is presented. The output delivers a sub-2-cycle (5.8 fs), 107 W average power, 1.07 mJ pulses at 100 kHz centered at 1030 nm with excellent spatial beam quality (M2 = 1.1, Strehl ratio S = 0.98), pointing stability (2.3 µrad), and superior long-term average power stability of 0.1% STD over more than 8 hours. This is combined with a carrier-envelope phase stability of 360 mrad in the frequency range from 10 Hz to 50 kHz, i.e., measured on a single-shot basis. This unique system will serve as an HR1 laser for the Extreme Light Infrastructure Attosecond Light Pulse Source research facility to enable high repetition rate isolated attosecond pulse generation.

2.
Opt Express ; 29(14): 22117-22126, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34265983

RESUMO

In this work, the experimental realization of a tunable high photon flux extreme ultraviolet light source is presented. This is enabled by high harmonic generation of two temporally delayed driving pulses with a wavelength of 1030 nm, resulting in a tuning range of 0.8 eV at the 19th harmonic at 22.8 eV. The implemented approach allows for fast tuning of the spectrum, is highly flexible and is scalable towards full spectral coverage at higher photon energies.

3.
Appl Opt ; 55(7): 1636-40, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26974623

RESUMO

In this paper, the average power scalability of components that can be used for intense few-cycle lasers based on nonlinear compression of modern femtosecond solid-state lasers is investigated. The key components of such a setup, namely, the gas-filled waveguides, laser windows, chirped mirrors for pulse compression and low dispersion mirrors for beam collimation, focusing, and beam steering are tested under high-average-power operation using a kilowatt cw laser. We demonstrate the long-term stable transmission of kW-level average power through a hollow capillary and a Kagome-type photonic crystal fiber. In addition, we show that sapphire substrates significantly improve the average power capability of metal-coated mirrors. Ultimately, ultrabroadband dielectric mirrors show negligible heating up to 1 kW of average power. In summary, a technology for scaling of few-cycle lasers up to 1 kW of average power and beyond is presented.

4.
Opt Lett ; 40(23): 5546-9, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26625047

RESUMO

Sources of long wavelengths few-cycle high repetition rate pulses are becoming increasingly important for a plethora of applications, e.g., in high-field physics. Here, we report on the realization of a tunable optical parametric chirped pulse amplifier at 100 kHz repetition rate. At a central wavelength of 2 µm, the system delivered 33 fs pulses and a 6 W average power corresponding to 60 µJ pulse energy with gigawatt-level peak powers. Idler absorption and its crystal heating is experimentally investigated for a BBO. Strategies for further power scaling to several tens of watts of average power are discussed.

5.
Sci Rep ; 9(1): 1735, 2019 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-30742029

RESUMO

Ptychography enables coherent diffractive imaging (CDI) of extended samples by raster scanning across the illuminating XUV/X-ray beam, thereby generalizing the unique advantages of CDI techniques. Table-top realizations of this method are urgently needed for many applications in sciences and industry. Previously, it was only possible to image features much larger than the illuminating wavelength with table-top ptychography although knife-edge tests suggested sub-wavelength resolution. However, most real-world imaging applications require resolving of the smallest and closely-spaced features of a sample in an extended field of view. In this work, resolving features as small as 2.5 λ (45 nm) using a table-top ptychography setup is demonstrated by employing a high-order harmonic XUV source with record-high photon flux. For the first time, a Rayleigh-type criterion is used as a direct and unambiguous resolution metric for high-resolution table-top setup. This reliably qualifies this imaging system for real-world applications e.g. in biological sciences, material sciences, imaging integrated circuits and semiconductor mask inspection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA