Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Mol Syst Biol ; 19(4): e10523, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-36847213

RESUMO

Vibrio natriegens is a Gram-negative bacterium with an exceptional growth rate that has the potential to become a standard biotechnological host for laboratory and industrial bioproduction. Despite this burgeoning interest, the current lack of organism-specific qualitative and quantitative computational tools has hampered the community's ability to rationally engineer this bacterium. In this study, we present the first genome-scale metabolic model (GSMM) of V. natriegens. The GSMM (iLC858) was developed using an automated draft assembly and extensive manual curation and was validated by comparing predicted yields, central metabolic fluxes, viable carbon substrates, and essential genes with empirical data. Mass spectrometry-based proteomics data confirmed the translation of at least 76% of the enzyme-encoding genes predicted to be expressed by the model during aerobic growth in a minimal medium. iLC858 was subsequently used to carry out a metabolic comparison between the model organism Escherichia coli and V. natriegens, leading to an analysis of the model architecture of V. natriegens' respiratory and ATP-generating system and the discovery of a role for a sodium-dependent oxaloacetate decarboxylase pump. The proteomics data were further used to investigate additional halophilic adaptations of V. natriegens. Finally, iLC858 was utilized to create a Resource Balance Analysis model to study the allocation of carbon resources. Taken together, the models presented provide useful computational tools to guide metabolic engineering efforts in V. natriegens.


Assuntos
Vibrio , Vibrio/genética , Vibrio/metabolismo , Carbono/metabolismo , Alocação de Recursos
2.
Biotechnol Bioeng ; 121(11): 3572-3581, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39031482

RESUMO

Xylose is an abundant, inexpensive and readily available carbohydrate common in minimally processed feedstocks such as seaweed and algae. While a wide variety of marine microbes have evolved to utilize seaweed and algae, only a few currently have the requisite characteristics and genetic engineering tools necessary to entertain the use of these underutilized feedstocks. The rapidly growing Gram-negative halophilic bacterium Vibrio natriegens is one such chassis. In this study, we engineered and tested xylose induction in V. natriegens as a tool for scalable bioproduction applications. First, we created a sensing construct based on the xylose operon from Escherichia coli MG1665 and measured its activity using a fluorescent reporter and identified that cellular import plays a key role in induction strength and that expression required the XylR transcription factor. Next, we identified that select deletions of the promoter region enhance gene expression, limiting the effect of carbohydrate repression when xylose is used as an inducer in the presence of industrially relevant carbon sources. Lastly, we used the optimized constructs to produce the biopolymer melanin using seawater mimetic media. One of these formulations utilized a nori-based seaweed extract as an inducer and demonstrated melanin yields comparable to previously optimized methods using a more traditional and costly inducer. Together, the results demonstrate that engineering xylose induction in V. natriegens can provide an effective and lower cost option for timed biosynthesis in scalable biomanufacturing applications using renewable feedstocks.


Assuntos
Engenharia Metabólica , Vibrio , Xilose , Vibrio/genética , Vibrio/metabolismo , Xilose/metabolismo , Engenharia Metabólica/métodos , Melaninas/biossíntese , Melaninas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Regiões Promotoras Genéticas/genética
3.
Environ Microbiol ; 22(4): 1310-1326, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32011087

RESUMO

The melanized yeast Exophiala dermatitidis is resistant to many environmental stresses and is used as a model for understanding the diverse roles of melanin in fungi. Here, we describe the extent of resistance of E. dermatitidis to acute γ-radiation exposure and the major mechanisms it uses to recover from this stress. We find that melanin does not protect E. dermatitidis from γ-radiation. Instead, environmental factors such as nutrient availability, culture age and culture density are much greater determinants of cell survival after exposure. We also observe a dramatic transcriptomic response to γ-radiation that mobilizes pathways involved in morphological development, protein degradation and DNA repair, and is unaffected by the presence of melanin. Together, these results suggest that the ability of E. dermatitidis to survive γ-radiation exposure is determined by the prior and the current metabolic state of the cells as well as DNA repair mechanisms, and that small changes in these conditions can lead to large effects in radiation resistance, which should be taken into account when understanding how diverse fungi recover from this unique stress.


Assuntos
Exophiala/metabolismo , Exophiala/efeitos da radiação , Melaninas/metabolismo , Reparo do DNA/efeitos da radiação , DNA Fúngico/efeitos da radiação , Exophiala/genética , Tolerância a Radiação , Estresse Fisiológico , Transcrição Gênica/efeitos da radiação , Transcriptoma
4.
Appl Environ Microbiol ; 86(5)2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-31836580

RESUMO

Melanin is a pigment produced by organisms throughout all domains of life. Due to its unique physicochemical properties, biocompatibility, and biostability, there has been an increasing interest in the use of melanin for broad applications. In the vast majority of studies, melanin has been either chemically synthesized or isolated from animals, which has restricted its use to small-scale applications. Using bacteria as biocatalysts is a promising and economical alternative for the large-scale production of biomaterials. In this study, we engineered the marine bacterium Vibrio natriegens, one of the fastest-growing organisms, to synthesize melanin by expressing a heterologous tyrosinase gene and demonstrated that melanin production was much faster than in previously reported heterologous systems. The melanin of V. natriegens was characterized as a polymer derived from dihydroxyindole-2-carboxylic acid (DHICA) and, similarly to synthetic melanin, exhibited several characteristic and useful features. Electron microscopy analysis demonstrated that melanin produced from V. natriegens formed nanoparticles that were assembled as "melanin ghost" structures, and the photoprotective properties of these particles were validated by their protection of cells from UV irradiation. Using a novel electrochemical reverse engineering method, we observed that melanization conferred redox activity to V. natriegens Moreover, melanized bacteria were able to quickly adsorb the organic compound trinitrotoluene (TNT). Overall, the genetic tractability, rapid division time, and ease of culture provide a set of attractive properties that compare favorably to current E. coli production strains and warrant the further development of this chassis as a microbial factory for natural product biosynthesis.IMPORTANCE Melanins are macromolecules that are ubiquitous in nature and impart a large variety of biological functions, including structure, coloration, radiation resistance, free radical scavenging, and thermoregulation. Currently, in the majority of investigations, melanins are either chemically synthesized or extracted from animals, which presents significant challenges for large-scale production. Bacteria have been used as biocatalysts to synthesize a variety of biomaterials due to their fast growth and amenability to genetic engineering using synthetic biology tools. In this study, we engineered the extremely fast-growing bacterium V. natriegens to synthesize melanin nanoparticles by expressing a heterologous tyrosinase gene with inducible promoters. Characterization of the melanin produced from V. natriegens-produced tyrosinase revealed that it exhibited physical and chemical properties similar to those of natural and chemically synthesized melanins, including nanoparticle structure, protection against UV damage, and adsorption of toxic compounds. We anticipate that producing and controlling melanin structures at the nanoscale in this bacterial system with synthetic biology tools will enable the design and rapid production of novel biomaterials for multiple applications.


Assuntos
Bacillus megaterium/genética , Biopolímeros/metabolismo , Melaninas/biossíntese , Microrganismos Geneticamente Modificados/metabolismo , Monofenol Mono-Oxigenase/genética , Vibrio/metabolismo , Biopolímeros/genética , Microrganismos Geneticamente Modificados/genética , Monofenol Mono-Oxigenase/metabolismo , Vibrio/genética
5.
Mar Drugs ; 17(12)2019 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-31801279

RESUMO

A recent goal of synthetic biology has been to identify new chassis that provide benefits lacking in model organisms. Vibrio natriegens is a marine Gram-negative bacterium which is an emergent synthetic biology chassis with inherent benefits: An extremely fast growth rate, genetic tractability, and the ability to grow on a variety of carbon sources ("feedstock flexibility"). Given these inherent benefits, we sought to determine its potential to heterologously produce natural products, and chose beta-carotene and violacein as test cases. For beta-carotene production, we expressed the beta-carotene biosynthetic pathway from the sister marine bacterium Vibrio campbellii, as well as the mevalonate biosynthetic pathway from the Gram-positive bacterium Lactobacillus acidophilus to improve precursor abundance. Violacein was produced by expressing a biosynthetic gene cluster derived from Chromobacterium violaceum. Not only was V. natriegens able to heterologously produce these compounds in rich media, illustrating its promise as a new chassis for small molecule drug production, but it also did so in minimal media using a variety of feedstocks. The ability for V. natriegens to produce natural products with multiple industrially-relevant feedstocks argues for continued investigations into the production of more complex natural products in this chassis.


Assuntos
Produtos Biológicos/metabolismo , Indóis/metabolismo , Vibrio/metabolismo , beta Caroteno/biossíntese , Vias Biossintéticas , Chromobacterium/genética , Família Multigênica , Biologia Sintética , Vibrio/genética
6.
Biomacromolecules ; 18(12): 4084-4098, 2017 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-29032671

RESUMO

Melanins are ubiquitous in nature but their biological activities and functions have been difficult to discern. Conventional approaches to determine material function start by resolving structure and then characterize relevant properties. These approaches have been less successful for melanins because of their complex structure and insolubility, and because their relevant properties are not readily characterized by conventional methods. Here, we report a novel spectroelectrochemical reverse engineering approach that focuses on redox and radical scavenging activities. In this method, the melanin is immobilized in a permeable hydrogel film adjacent to an electrode and this immobilized melanin is probed using diffusible mediators and complex electrical inputs. Response characteristics are measured using two modalities, electrochemical currents associated with the reaction of diffusible mediators, and optical absorbance associated with the presence of diffusible free radicals. Using this method, we observed that both Sepia and fungal melanins are redox active and can repeatedly exchange electrons to be switched between oxidized and reduced states. Further, we observed that these melanins can quench radicals either by donating or accepting electrons. Finally, we demonstrate that the melanins' radical scavenging activities are dependent on their redox state such that a melanin must be reduced to have donatable electrons to quench oxidative free radicals, or must be oxidized to accept electrons from reductive free radicals. While the observation that melanin is redox-active is consistent with their well-accepted beneficial (radical-scavenging) and detrimental (pro-oxidant) activities, these observations may also support less well-accepted proposed functions for melanin in energy harvesting and redox communication.


Assuntos
Radicais Livres/química , Melaninas/química , Espécies Reativas de Oxigênio/química , Análise Espectral/métodos , Animais , Fungos/química , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Oxirredução , Sepia
7.
Metab Eng ; 38: 1-9, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27237361

RESUMO

Motivations for the hierarchical assembly of protein complexes are diverse spanning biosensing, biomedical and bioreactor applications. The assembly processes should be simple, scalable, versatile, and biologically benign to minimize loss of component parts. A "plug and play" methodology comprising a generic linking apparatus may enable rapid design and optimization. One application that desires these qualities is metabolon construction wherein multiple enzymes are organized in defined pathways to mediate biochemical flux. Here, we propose a modular design by incorporation of crosslinking-compliant amino acid tags comprised of lysine or glutamine residues at the N- or C-termini of the to-be-assembled proteins. These amino acid tags enable covalent crosslinking using microbial transglutaminase (mTG). Modularity is demonstrated where stoichiometries and relative positions of enzymes and other functional proteins are altered. Construction of multifunctional complexes is demonstrated by crosslinking domains of different function and origin. Namely, we built a two-subunit quorum sensing (QS) biosynthetic metabolon on solid supports and altered stoichiometries of the limiting constituents to increase the overall rate of reaction. To display functionality beyond biosynthesis, we constructed a molecular communication 'device' (antibody binding Protein G-QS complex) to target bacterial cells and demonstrated tailored QS responses among targeted bacteria. We propose that this approach, solid phase mTG-mediated linkage of biological components, can be used for assembly within many environments including microreactors or lab-on-a-chip systems. Because the methodology is general, we envision construction of multi-functional protein complexes in a 'plug and play' fashion for a variety of biosensing and synthetic biology applications.


Assuntos
Reagentes de Ligações Cruzadas/química , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Engenharia de Proteínas/métodos , Subunidades Proteicas/química , Subunidades Proteicas/genética , Transglutaminases/genética , Aminoácidos/química , Aminoácidos/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Transglutaminases/química
8.
Front Bioeng Biotechnol ; 11: 1239756, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781538

RESUMO

Melanin is one of the most abundant natural biomolecules on Earth. These macromolecular biopolymers display several unique physical and chemical properties and have garnered interest as biomaterials for various commercial and industrial applications. To this end, extensive research has gone into refining methods for the synthesis and extraction of melanin from natural and recombinant sources. In this study, we developed and refined a procedure using a recombinant microbial system for the biosynthesis of melanin using the tyrosinase enzyme Tyr1 and tyrosine as a substrate. Using the emergent microbial chassis organisms Vibrio natriegens, we achieved maximal yields of 7.57 g/L, and one of the highest reported volumetric productivities of 473 mg L-1 h-1 with 100% conversion rates in an optimized, minimally defined medium. Additionally, we identified and investigated the use of a native copper responsive promoter in V. natriegens for stringent regulation of heterologous protein expression as a cost effective alternative to traditional IPTG-based induction. This research represents a promising advancement towards a green, rapid, and economical alternative for the biomanufacture of melanin.

9.
Toxics ; 11(1)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36668739

RESUMO

Radiation damage is associated with inflammation and immunity in the intestinal mucosa, including gut microbiota. Melanin has a unique capacity to coordinate a biological reaction in response to environmental stimuli, such as radiation exposure. Thus, melanin and melanized microbes have potential to be used for mitigation of injury induced by radiation. The purpose of the current study is to examine the safety of these agents for future targeting gut microbiome to prevent radiation-induced injury. We administered mice with soluble allomelanin and observed its effect on the intestinal physiology and body weight. We then established a melanized bacterial strain in probiotic E. coli Nissle. We measured the body weight of the mice treated with melanized E. coli Nissle. We showed the enhanced bacterial abundance and colonization of the melanized bacteria E. coli Nissle in the intestine. Melanized E. coli Nissle colonized the colon in less than 3 h and showed consistent colonization over 24 h post one oral gavage. We did not find significant changes of bodyweight in the mice treated with melanized bacteria. We did not observe any inflammation in the intestine. These results demonstrate the safety of soluble melanin and melanin-producing bacteria and will support the future studies to treat radiation-induced injuries and restore dysbiosis.

10.
ACS Synth Biol ; 10(11): 2808-2823, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34637280

RESUMO

Electroactive bacteria produce or consume electrical current by moving electrons to and from extracellular acceptors and donors. This specialized process, known as extracellular electron transfer, relies on pathways composed of redox active proteins and biomolecules and has enabled technologies ranging from harvesting energy on the sea floor, to chemical sensing, to carbon capture. Harnessing and controlling extracellular electron transfer pathways using bioengineering and synthetic biology promises to heighten the limits of established technologies and open doors to new possibilities. In this review, we provide an overview of recent advancements in genetic tools for manipulating native electroactive bacteria to control extracellular electron transfer. After reviewing electron transfer pathways in natively electroactive organisms, we examine lessons learned from the introduction of extracellular electron transfer pathways into Escherichia coli. We conclude by presenting challenges to future efforts and give examples of opportunities to bioengineer microbes for electrochemical applications.


Assuntos
Fontes de Energia Bioelétrica/microbiologia , Escherichia coli/fisiologia , Biologia Sintética/métodos , Eletrodos/microbiologia , Transporte de Elétrons/fisiologia , Humanos , Oxirredução
11.
Nat Nanotechnol ; 16(6): 688-697, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33782589

RESUMO

We developed a bioelectronic communication system that is enabled by a redox signal transduction modality to exchange information between a living cell-embedded bioelectronics interface and an engineered microbial network. A naturally communicating three-member microbial network is 'plugged into' an external electronic system that interrogates and controls biological function in real time. First, electrode-generated redox molecules are programmed to activate gene expression in an engineered population of electrode-attached bacterial cells, effectively creating a living transducer electrode. These cells interpret and translate electronic signals and then transmit this information biologically by producing quorum sensing molecules that are, in turn, interpreted by a planktonic coculture. The propagated molecular communication drives expression and secretion of a therapeutic peptide from one strain and simultaneously enables direct electronic feedback from the second strain, thus enabling real-time electronic verification of biological signal propagation. Overall, we show how this multifunctional bioelectronic platform, termed a BioLAN, reliably facilitates on-demand bioelectronic communication and concurrently performs programmed tasks.


Assuntos
Eletrônica/métodos , Escherichia coli/metabolismo , Microrganismos Geneticamente Modificados/metabolismo , 4-Butirolactona/análogos & derivados , 4-Butirolactona/metabolismo , Células Imobilizadas/química , Eletrodos , Desenho de Equipamento , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Regulação Bacteriana da Expressão Gênica , Ouro/química , Fator Estimulador de Colônias de Granulócitos e Macrófagos/biossíntese , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Peróxido de Hidrogênio/metabolismo , Microbiota , Microrganismos Geneticamente Modificados/genética , Oxirredução , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais , beta-Galactosidase/metabolismo
12.
ACS Synth Biol ; 8(9): 2069-2079, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31419124

RESUMO

The fast-growing nonmodel marine bacterium Vibrio natriegens has recently garnered attention as a host for molecular biology and biotechnology applications. In order to further its capabilities as a synthetic biology chassis, we have characterized a wide range of genetic parts and tools for use in V. natriegens. These parts include many commonly used resistance markers, promoters, ribosomal binding sites, reporters, terminators, degradation tags, origin of replication sequences, and plasmid backbones. We have characterized the behavior of these parts in different combinations and have compared their functionality in V. natriegens and Escherichia coli. Plasmid stability over time, plasmid copy numbers, and production load on the cells were also evaluated. Additionally, we tested constructs for chemical and optogenetic induction and characterized basic engineered circuit behavior in V. natriegens. The results indicate that, while most parts and constructs work similarly in the two organisms, some deviate significantly. Overall, these results will serve as a primer for anyone interested in engineering V. natriegens and will aid in developing more robust synthetic biology principles and approaches for this nonmodel chassis.


Assuntos
Biologia Sintética/métodos , Vibrio/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Variações do Número de Cópias de DNA , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Plasmídeos/genética , Plasmídeos/metabolismo , Regiões Promotoras Genéticas , Ribossomos/metabolismo , Vibrio/genética
13.
Adv Healthc Mater ; 6(1)2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27863177

RESUMO

A hydrogel-based dual film coating is electrofabricated for transducing bio-relevant chemical information into electronical output. The outer film has a synthetic biology construct that recognizes an external molecular signal and transduces this input into the expression of an enzyme that converts redox-inactive substrate into a redox-active intermediate, which is detected through an amplification mechanism of the inner redox-capacitor film.


Assuntos
Eletrônica , Hidrogéis/química , Membranas Artificiais , Biologia Sintética , Oxirredução
14.
Nat Commun ; 8: 14030, 2017 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-28094788

RESUMO

The ability to interconvert information between electronic and ionic modalities has transformed our ability to record and actuate biological function. Synthetic biology offers the potential to expand communication 'bandwidth' by using biomolecules and providing electrochemical access to redox-based cell signals and behaviours. While engineered cells have transmitted molecular information to electronic devices, the potential for bidirectional communication stands largely untapped. Here we present a simple electrogenetic device that uses redox biomolecules to carry electronic information to engineered bacterial cells in order to control transcription from a simple synthetic gene circuit. Electronic actuation of the native transcriptional regulator SoxR and transcription from the PsoxS promoter allows cell response that is quick, reversible and dependent on the amplitude and frequency of the imposed electronic signals. Further, induction of bacterial motility and population based cell-to-cell communication demonstrates the versatility of our approach and potential to drive intricate biological behaviours.


Assuntos
Eletrônica/instrumentação , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Eletrônica/métodos , Escherichia coli/química , Escherichia coli/citologia , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Oxirredução , Regiões Promotoras Genéticas , Transdução de Sinais , Biologia Sintética , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
Adv Healthc Mater ; 6(24)2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29045017

RESUMO

Biology and electronics are both expert at for accessing, analyzing, and responding to information. Biology uses ions, small molecules, and macromolecules to receive, analyze, store, and transmit information, whereas electronic devices receive input in the form of electromagnetic radiation, process the information using electrons, and then transmit output as electromagnetic waves. Generating the capabilities to connect biology-electronic modalities offers exciting opportunities to shape the future of biosensors, point-of-care medicine, and wearable/implantable devices. Redox reactions offer unique opportunities for bio-device communication that spans the molecular modalities of biology and electrical modality of devices. Here, an approach to search for redox information through an interactive electrochemical probing that is analogous to sonar is adopted. The capabilities of this approach to access global chemical information as well as information of specific redox-active chemical entities are illustrated using recent examples. An example of the use of synthetic biology to recognize external molecular information, process this information through intracellular signal transduction pathways, and generate output responses that can be detected by electrical modalities is also provided. Finally, exciting results in the use of redox reactions to actuate biology are provided to illustrate that synthetic biology offers the potential to guide biological response through electrical cues.


Assuntos
Biologia , Eletrônica , Oxirredução , Técnicas Biossensoriais , Materiais Revestidos Biocompatíveis/química , Galvanoplastia , Expressão Gênica , Humanos , Hidrogéis/química , Esquizofrenia/diagnóstico , Transdução de Sinais , Biologia Sintética
16.
Data Brief ; 8: 1031-5, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27508259

RESUMO

Data presented is related to an article titled "Modular construction of multi-subunit protein complexes using engineered tags and microbial transglutaminase" (Bhokisham et al., 2016) [1]. In this article, we have presented western blot and flux data associated with assembly of Pfs-LuxS enzyme complexes on beads using uni-tagged and bi-tagged LuxS enzymes. We have also presented biochemical flux following changes in enzyme stoichiometries. We covalently coupled a Pfs-LuxS complex with Protein G, an antibody binding non-enzyme component and directed these complexes to the surfaces of bacterial cells via anti-Escherichia coli antibodies. Fluorescence microscopy images represented the altered behavior of bacterial cells in response to the autoinducer-2 that is synthesized by the Protein G-enzyme complexes.

17.
ACS Synth Biol ; 5(1): 28-35, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26542230

RESUMO

In order to match our ability to conceive of and construct cells with enhanced function, we must concomitantly develop facile, real-time methods for elucidating performance. With these, new designs can be tested in silico and steps in construction incrementally validated. Electrochemical monitoring offers the above advantages largely because signal transduction stems from direct electron transfer, allowing for potentially quicker and more integrated measurements. One of the most common genetic reporters, ß-galactosidase, can be measured both spectrophotometrically (Miller assay) and electrochemically. However, since the relationship between the two is not well understood, the electrochemical methods have not yet garnered the attention of biologists. With the aim of demonstrating the utility of an electrochemical measurement to the synthetic biology community, we created a genetic construct that interprets and reports (with ß-galactosidase) on the concentration of the bacterial quorum sensing molecule autoinducer-2. In this work, we provide a correlation between electrochemical measurements and Miller Units. We show that the electrochemical assay works with both lysed and whole cells, allowing for the prediction of one from the other, and for continuous monitoring of cell response. We further present a conceptually simple and generalized mathematical model for cell-based ß-galactosidase reporter systems that could aid in building and predicting a variety of synthetic biology constructs. This first-ever in-depth comparison and analysis aims to facilitate the use of electrochemical real-time monitoring in the field of synthetic biology as well as to facilitate the creation of constructs that can more easily communicate information to electronic systems.


Assuntos
Bioensaio/métodos , Técnicas Eletroquímicas/métodos , Genes Reporter , beta-Galactosidase/metabolismo , Técnicas Biossensoriais , Galactose/metabolismo , Homosserina/análogos & derivados , Lactonas , Modelos Teóricos , Regiões Promotoras Genéticas/genética , Espectrofotometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA