Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Anal Biochem ; 579: 1-8, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31078491

RESUMO

Gene expression studies using microarrays have provided important insights into understanding the mechanisms of transcriptional regulation in a variety of biological and disease phenomena. In a previous study, we developed Photo-DEAN, a universal-microarray-based RNA quantification method that enabled reverse transcription-free multiplex measurement of the absolute amount of RNA. Photo-DEAN promotes high-throughput and bias-less transcriptome analysis without the need for common controls or additional complicated normalization steps. In this study, we empirically identified two conditions (individual specificity and uniform duplex stability) necessary for in silico design of probe sequences, allowing the Photo-DEAN method to accurately measure the absolute amount of target RNA in total RNA. We then demonstrated that using the modified probe design conditions, the Photo-DEAN method successfully measured the absolute amount of pgi mRNA spiked into E. coli total RNA. The measurement was performed at five different sites in the coding region of pgi mRNA, exhibiting no significant site dependence. Theoretical considerations suggested that probe sequences longer than the previously used 30-bases better satisfy the necessary design conditions.


Assuntos
Perfilação da Expressão Gênica/métodos , Glucose-6-Fosfato Isomerase/genética , RNA Mensageiro/análise , Transcrição Reversa , Escherichia coli/metabolismo , Sensibilidade e Especificidade
2.
BMC Biotechnol ; 17(1): 36, 2017 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-28399854

RESUMO

BACKGROUND: N-Butanol has favorable characteristics for use as either an alternative fuel or platform chemical. Bio-based n-butanol production using microbes is an emerging technology that requires further development. Although bio-industrial microbes such as Escherichia coli have been engineered to produce n-butanol, reactive oxygen species (ROS)-mediated toxicity may limit productivity. Previously, we show that outer-membrane-targeted tilapia metallothionein (OmpC-TMT) is more effective as an ROS scavenger than human and mouse metallothioneins to reduce oxidative stress in the host cell. RESULTS: The host strain (BUT1-DE) containing the clostridial n-butanol pathway displayed a decreased growth rate and limited n-butanol productivity, likely due to ROS accumulation. The clostridial n-butanol pathway was co-engineered with inducible OmpC-TMT in E. coli (BUT3-DE) for simultaneous ROS removal, and its effect on n-butanol productivity was examined. The ROS scavenging ability of cells overexpressing OmpC-TMT was examined and showed an approximately twofold increase in capacity. The modified strain improved n-butanol productivity to 320 mg/L, whereas the control strain produced only 95.1 mg/L. Transcriptomic analysis revealed three major KEGG pathways that were significantly differentially expressed in the BUT3-DE strain compared with their expression in the BUT1-DE strain, including genes involved in oxidative phosphorylation, fructose and mannose metabolism and glycolysis/gluconeogenesis. CONCLUSIONS: These results indicate that OmpC-TMT can increase n-butanol production by scavenging ROS. The transcriptomic analysis suggested that n-butanol causes quinone malfunction, resulting in oxidative-phosphorylation-related nuo operon downregulation, which would diminish the ability to convert NADH to NAD+ and generate proton motive force. However, fructose and mannose metabolism-related genes (fucA, srlE and srlA) were upregulated, and glycolysis/gluconeogenesis-related genes (pfkB, pgm) were downregulated, which further assisted in regulating NADH/NAD+ redox and preventing additional ATP depletion. These results indicated that more NADH and ATP were required in the n-butanol synthetic pathway. Our study demonstrates a potential approach to increase the robustness of microorganisms and the production of toxic chemicals through the ability to reduce oxidative stress.


Assuntos
1-Butanol/metabolismo , Clostridium/enzimologia , Escherichia coli/fisiologia , Metalotioneína/metabolismo , Porinas/metabolismo , Tilápia/metabolismo , 1-Butanol/isolamento & purificação , Animais , Membrana Celular/metabolismo , Clostridium/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Melhoramento Genético/métodos , Metalotioneína/genética , Porinas/genética , Engenharia de Proteínas/métodos , Transdução de Sinais/genética , Tilápia/genética
3.
ACS Omega ; 9(6): 6873-6879, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38371756

RESUMO

In this study, we devised a novel method to create heterologous producers of lethal antibiotics against host bacteria. Heterologous producers cannot be created when antibiotics are toxic to host bacteria. To overcome this challenge, we developed a novel method involving construction of a combinatorial library with various promoters and screening based on the production. To realize this, we utilized Combi-OGAB (Combinatorial Ordered Gene Assembly in Bacillus subtilis), which technology can effectively construct diverse combinatorial library and accelerate screening procedures. B. subtilis and Gramicidin S were selected as the host bacterium and the targeted antibiotic, respectively. The screened producer from Combi-OGAB screening cycles achieved >30-fold productivity over the lethal level. These results suggest that our strategy has the potential to maximize the phenotypic resistance of host bacteria to create heterologous lethal antibiotic producers.

4.
ACS Synth Biol ; 12(1): 305-318, 2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36563322

RESUMO

Recombination of biosynthetic gene clusters including those of non-ribosomal peptide synthetases (NRPSs) is essential for understanding the mechanisms of biosynthesis. Due to relatively huge gene cluster sizes ranging from 10 to 150 kb, the prevalence of sequence repeats, and inability to clearly define optimal points for manipulation, functional characterization of recombinant NRPSs with maintained activity has been hindered. In this study, we introduce a simple yet rapid approach named "Seamed Express Assembly Method (SEAM)" coupled with Ordered Gene Assembly in Bacillus subtilis (OGAB) to reconstruct fully functional plipastatin NRPS. This approach is enabled by the introduction of restriction enzyme sites as seams at module borders. SEAM-OGAB is then first demonstrated by constructing the ppsABCDE NRPS (38.4 kb) to produce plipastatin, a cyclic decapeptide in B. subtilis. The introduced amino acid level seams do not hinder the NRPS function and enable successful production of plipastatin at a commensurable titer. It is challenging to modify the plipastatin NRPS gene cluster due to the presence of three long direct-repeat sequences; therefore, this study demonstrates that SEAM-OGAB can be readily applied towards the recombination of various NRPSs. Compared to previous NRPS gene assembly methods, the advantage of SEAM-OGAB is that it readily enables the shuffling of NRPS gene modules, and therefore, chimeric NRPSs can be rapidly constructed for the production of novel peptides. This chimeric assembly application of SEAM-OGAB is demonstrated by swapping plipastatin NRPS and surfactin NRPS modules to produce two novel lipopeptides in B. subtilis.


Assuntos
Bacillus subtilis , Peptídeo Sintases , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Peptídeo Sintases/metabolismo , Sequência de Bases , Lipopeptídeos/genética
5.
Artigo em Inglês | MEDLINE | ID: mdl-36587464

RESUMO

Conventional analysis of microbial bioproducers requires the extraction of metabolites from liquid cultures, where the culturing steps are time consuming and greatly limit throughput. To break through this barrier, the current study aims to directly evaluate microbial bioproduction colonies by way of supercritical fluid extraction-supercritical fluid chromatography-triple quadrupole mass spectrometry (SFE-SFC-MS/MS). The online SFE-SFC-MS/MS system offers great potential for high-throughput analysis due to automated metabolite extraction without any need for pretreatment. This is the first report of SFE-SFC-MS/MS as a method for direct colony screening, as demonstrated in the high-throughput screening of (-)-limonene bioproducers. Compared with conventional analysis, the SFE-SFC-MS/MS system enables faster and more convenient screening of highly productive strains.


Assuntos
Cromatografia com Fluido Supercrítico , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Limoneno , Cromatografia com Fluido Supercrítico/métodos , Cromatografia Líquida , Ensaios de Triagem em Larga Escala/métodos
6.
Appl Environ Microbiol ; 78(9): 3177-84, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22344649

RESUMO

Ultrahigh-molecular-weight poly[(R)-3-hydroxybutyrate] [UHMW-P(3HB)] synthesized by genetically engineered Escherichia coli is an environmentally friendly bioplastic material which can be processed into strong films or fibers. An operon of three genes (organized as phaCAB) encodes the essential proteins for the production of P(3HB) in the native producer, Ralstonia eutropha. The three genes of the phaCAB operon are phaC, which encodes the polyhydroxyalkanoate (PHA) synthase, phaA, which encodes a 3-ketothiolase, and phaB, which encodes an acetoacetyl coenzyme A (acetoacetyl-CoA) reductase. In this study, the effect of gene order of the phaCAB operon (phaABC, phaACB, phaBAC, phaBCA, phaCAB, and phaCBA) on an expression plasmid in genetically engineered E. coli was examined in order to determine the best organization to produce UHMW-P(3HB). The results showed that P(3HB) molecular weights and accumulation levels were both dependent on the order of the pha genes relative to the promoter. The most balanced production result was achieved in the strain harboring the phaBCA expression plasmid. In addition, analysis of expression levels and activity for P(3HB) biosynthesis enzymes and of P(3HB) molecular weight revealed that the concentration of active PHA synthase had a negative correlation with P(3HB) molecular weight and a positive correlation with cellular P(3HB) content. This result suggests that the level of P(3HB) synthase activity is a limiting factor for producing UHMW-P(3HB) and has a significant impact on P(3HB) production.


Assuntos
Escherichia coli/genética , Escherichia coli/metabolismo , Ordem dos Genes , Rearranjo Gênico , Hidroxibutiratos/metabolismo , Óperon , Poliésteres/metabolismo , Cupriavidus necator/genética , Cupriavidus necator/metabolismo , Expressão Gênica , Vetores Genéticos , Hidroxibutiratos/química , Peso Molecular , Organismos Geneticamente Modificados , Plasmídeos , Poliésteres/química , Regiões Promotoras Genéticas
7.
Bioorg Med Chem ; 20(12): 3793-8, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22609073

RESUMO

Plipastatin A1 and fengycin IX were experimentally proven to be identical compounds, while these had been considered as diastereomers due to the permutation of the enantiomeric pair of Tyr in most papers. The (1)H NMR spectrum changed to become quite similar to that of plipastatin A1, when the sample which provided resembled spectrum of fengycin IX was treated with KOAc followed by LH-20 gel filtration. Our structural investigations disclosed that the structures of these molecules should be settled into that of plipastatin A1 by Umezawa (L-Tyr4 and D-Tyr10).


Assuntos
Ácidos Graxos/química , Oligopeptídeos/química , Peptídeos Cíclicos/química , Bacillus subtilis/química , Bacillus subtilis/isolamento & purificação , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Estereoisomerismo
8.
Nat Commun ; 13(1): 1405, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35296652

RESUMO

Engineering the microbial production of secondary metabolites is limited by the known reactions of correctly annotated enzymes. Therefore, the machine learning discovery of specialized enzymes offers great potential to expand the range of biosynthesis pathways. Benzylisoquinoline alkaloid production is a model example of metabolic engineering with potential to revolutionize the paradigm of sustainable biomanufacturing. Existing bacterial studies utilize a norlaudanosoline pathway, whereas plants contain a more stable norcoclaurine pathway, which is exploited in yeast. However, committed aromatic precursors are still produced using microbial enzymes that remain elusive in plants, and additional downstream missing links remain hidden within highly duplicated plant gene families. In the current study, machine learning is applied to predict and select plant missing link enzymes from homologous candidate sequences. Metabolomics-based characterization of the selected sequences reveals potential aromatic acetaldehyde synthases and phenylpyruvate decarboxylases in reconstructed plant gene-only benzylisoquinoline alkaloid pathways from tyrosine. Synergistic application of the aryl acetaldehyde producing enzymes results in enhanced benzylisoquinoline alkaloid production through hybrid norcoclaurine and norlaudanosoline pathways.


Assuntos
Alcaloides , Benzilisoquinolinas , Benzilisoquinolinas/metabolismo , Aprendizado de Máquina , Engenharia Metabólica , Plantas/genética , Plantas/metabolismo
9.
Nat Methods ; 5(1): 41-3, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18066072

RESUMO

We established a protocol to construct complete recombinant genomes from their small contiguous DNA pieces and obtained the genomes of mouse mitochondrion and rice chloroplast using a B. subtilis genome (BGM) vector. This method allows the design of any recombinant genomes, valuable not only for fundamental research in systems biology and synthetic biology but also for various applications in the life sciences.


Assuntos
Bacillus subtilis/genética , Proteínas de Bactérias/genética , DNA Bacteriano/genética , Engenharia Genética/métodos , Vetores Genéticos/genética , Genoma Bacteriano/genética , Proteínas Recombinantes/genética
10.
J Biosci Bioeng ; 127(4): 451-457, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30327168

RESUMO

Free dihomo-γ-linolenic acid (DGLA) and its desaturated form, free arachidonic acid (ARA) are polyunsaturated free fatty acids (FFAs). They are useful raw materials to produce eicosanoid pharmaceuticals. In this study, we aimed at their production by the oleaginous filamentous fungus Aspergillus oryzae via metabolic engineering. Three genes encoding enzymes involved in the synthesis of DGLA and ARA, were isolated from the filamentous fungus Mortierella alpina that produces ARA in a triacylglycerol form. These genes were concatenated to promoters and terminators of highly expressed genes of A. oryzae, and the concatenated DNA fragments were further concatenated with each other to generate a single DNA fragment in the form of a biosynthetic gene cluster. By homologous recombination, the resulting DNA fragment was integrated to the chromosome of the A. oryzae acyl-CoA synthetase gene disruptant whose FFA productivity was enhanced at 9.2-fold more than the wild-type strain. The DNA-integrated disruptant produced free DGLA but did not produce free ARA. Thus, focusing on free DGLA, after removal of the gene for converting DGLA to ARA, the constructed strain produced free DGLA at 145 mg/l for 5 d. Also, by supplementing Triton X-100 surfactant at 1% to the culture, over 80% of free DGLA was released from cells without inhibiting the growth. Consequently, the constructed strain will be useful for attempting production of free DGLA-derived eicosanoids because it bypasses excision of free DGLA from triacylglycerols by lipase. To our knowledge, this is the first report on microbial production of free DGLA and its extracellular release.


Assuntos
Ácido 8,11,14-Eicosatrienoico/metabolismo , Aspergillus oryzae , Via Secretória/efeitos dos fármacos , Tensoativos/farmacologia , Ácido Araquidônico/metabolismo , Aspergillus oryzae/efeitos dos fármacos , Aspergillus oryzae/genética , Aspergillus oryzae/metabolismo , Espaço Extracelular , Ácidos Graxos Insaturados/metabolismo , Regulação Enzimológica da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Engenharia Metabólica/métodos , Mortierella/enzimologia , Mortierella/genética , Octoxinol/farmacologia , Organismos Geneticamente Modificados , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Via Secretória/genética
11.
Nat Commun ; 10(1): 2336, 2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-31118421

RESUMO

In the original version of this Article, the abbreviation of 3,4-dihydroxyphenylacetaldehyde synthase presented in the first paragraph of the Discussion section was given incorrectly as DYPAA. The correct abbreviation for this enzyme is DHPAAS. This error has been corrected in both the PDF and HTML versions of the Article.

12.
Nat Commun ; 10(1): 2015, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31043610

RESUMO

Previous studies have utilized monoamine oxidase (MAO) and L-3,4-dihydroxyphenylalanine decarboxylase (DDC) for microbe-based production of tetrahydropapaveroline (THP), a benzylisoquinoline alkaloid (BIA) precursor to opioid analgesics. In the current study, a phylogenetically distinct Bombyx mori 3,4-dihydroxyphenylacetaldehyde synthase (DHPAAS) is identified to bypass MAO and DDC for direct production of 3,4-dihydroxyphenylacetaldehyde (DHPAA) from L-3,4-dihydroxyphenylalanine (L-DOPA). Structure-based enzyme engineering of DHPAAS results in bifunctional switching between aldehyde synthase and decarboxylase activities. Output of dopamine and DHPAA products is fine-tuned by engineered DHPAAS variants with Phe79Tyr, Tyr80Phe and Asn192His catalytic substitutions. Balance of dopamine and DHPAA products enables improved THP biosynthesis via a symmetrical pathway in Escherichia coli. Rationally engineered insect DHPAAS produces (R,S)-THP in a single enzyme system directly from L-DOPA both in vitro and in vivo, at higher yields than that of the wild-type enzyme. However, DHPAAS-mediated downstream BIA production requires further improvement.


Assuntos
Descarboxilases de Aminoácido-L-Aromático/metabolismo , Escherichia coli/metabolismo , Proteínas de Insetos/metabolismo , Engenharia Metabólica/métodos , Tetra-Hidropapaverolina/metabolismo , Ácido 3,4-Di-Hidroxifenilacético/análogos & derivados , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Motivos de Aminoácidos/genética , Animais , Descarboxilases de Aminoácido-L-Aromático/química , Descarboxilases de Aminoácido-L-Aromático/genética , Descarboxilases de Aminoácido-L-Aromático/isolamento & purificação , Bombyx , Dopamina/metabolismo , Proteínas de Insetos/química , Proteínas de Insetos/genética , Proteínas de Insetos/isolamento & purificação , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade
13.
Biotechnol Biofuels ; 11: 157, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29930703

RESUMO

BACKGROUND: Enzymatic conversion of lignocellulosic biomass into soluble sugars is a major bottleneck in the plant biomass utilization. Several anaerobic organisms cope these issues via multiple-enzyme complex system so called 'cellulosome'. Hence, we proposed a "biomimic operon" concept for making an artificial cellulosome which can be used as a promising tool for the expression of cellulosomal enzymes in Bacillus subtilis. RESULTS: According to the proteomic analysis of Clostridium thermocellum ATCC27405 induced by Avicel or cellobiose, we selected eight highly expressed cellulosomal genes including a scaffoldin protein gene (cipA), a cell-surface anchor gene (sdbA), two exoglucanase genes (celK and celS), two endoglucanase genes (celA and celR), and two xylanase genes (xynC and xynZ). Arranging these eight genes in two different orders, we constructed two different polycistronic operons using the ordered gene assembly in Bacillus method. This is the first study to express the whole CipA along with cellulolytic enzymes in B. subtilis. Each operon was successfully expressed in B. subtilis RM125, and the protein complex assembly, cellulose-binding ability, thermostability, and cellulolytic activity were demonstrated. The operon with a higher xylanase activity showed greater saccharification on complex cellulosic substrates such as Napier grass than the other operon. CONCLUSIONS: In this study, a strategy for constructing an efficient cellulosome system was developed and two different artificial cellulosomal operons were constructed. Both operons could efficiently express the cellulosomal enzymes and exhibited cellulose saccharification. This strategy can be applied to different industries with cellulose-containing materials, such as papermaking, biofuel, agricultural compost, mushroom cultivation, and waste processing industries.

14.
Gene ; 399(1): 72-80, 2007 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-17560740

RESUMO

The Bacillus subtilis GenoMe (BGM) vector was designed as a versatile vector for the cloning of giant DNA segments. Cloned DNA in the BGM can be retrieved to a plasmid using our Bacillus recombinational transfer (BReT) method that takes advantage of competent cell transformation. However, delivery of the plasmid to a different B. subtilis strain by the normal transformation method is hampered by DNA size-related inefficiency. Therefore, we designed a novel method, conjugational plasmid-mediated DNA retrieval and transfer (CReT) from the BGM vector, and investigated conjugational transmission to traverse DNA between cells to circumvent the transformation-induced size limitation. pLS20, a 65-kb plasmid capable of conjugational transfer between B. subtilis strains, was modified to retrieve DNA cloned in the BGM vector by homologous recombination during normal culture. As the plasmid copy number was estimated to be 3, the retrieval plasmid was selected using increased numbers of marker genes derived from the retrieved DNA. We applied this method to retrieve Synechocystis genome segments up to 90 kb in length. We observed retrieved plasmid transfers between B. subtilis strains by conjugation in the absence of structural alterations in the DNA fragment. Our observations extend DNA transfer protocols over previously exploited size ranges.


Assuntos
Bacillus subtilis/genética , Clonagem Molecular/métodos , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Plasmídeos/genética , Conjugação Genética , Genoma Bacteriano/genética , Plasmídeos/química , Synechocystis/genética
15.
J Biotechnol ; 129(4): 592-603, 2007 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-17376553

RESUMO

Methods that allow the assembly of genes in one single DNA segment are of great use in bioengineering and synthetic biology. The biosynthesis of plipastatin, a lipopeptide antibiotic synthesized non-ribosomally by Bacillus subtilis 168, requires three gene blocks at different genome loci, i.e. the peptide synthetase operon ppsABCDE (38-kb), degQ (0.6kb), and sfp (1.0kb). We applied a DNA assembly protocol in B. subtilis, named ordered gene assembly in B. subtilis (OGAB) method, to incorporate those three gene blocks into a one-unit plasmid via one ligation-reaction. High yields of correct assembly, above 87%, allowed us to screen for the plasmid that produced plipastatin at a level approximately 10-fold higher than in the wild-type. In contrast to that recombinogenic technologies used in E. coli require repetitive assembly steps and/or several selection markers, our method features high fidelity and efficiency, is completed in one ligation using only one selection marker associating with plasmid vector, and is applicable to DNA fragments larger than 40kb.


Assuntos
Bacillus subtilis/metabolismo , Ácidos Graxos/genética , Oligopeptídeos/genética , Peptídeos Cíclicos/genética , Bacillus subtilis/genética , DNA Bacteriano/genética , Regulação Bacteriana da Expressão Gênica , Engenharia Genética/métodos , Genoma Bacteriano , Modelos Genéticos , Mutagênese Sítio-Dirigida , Plasmídeos
16.
J Mol Biol ; 349(5): 1036-44, 2005 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-15913652

RESUMO

The combined use of the contemporary vector systems, the bacterial artificial chromosome (BAC) vector and the Bacillus subtilis genome (BGM) vector, makes possible the handling of giant-length DNA (above 100 kb). Our newly constructed BGM vector efficiently integrated DNA prepared in the BAC vector. A BAC library comprised of 18 independent clones prepared from mitochondrial DNA (mtDNA) of Arabidopsis thaliana was converted to a parallel BGM library using the new BGM vector. The effectiveness of the combined use of the vector systems was confirmed by the stable recovery of all 18 DNAs as BAC clones from the respective BGM clones. We show that DNA in BGM was stably preserved at room temperature after spore formation of the host B.subtilis. Rapid and stable shuttling between Escherichiacoli and the B. subtilis host, combined with spore-mediated DNA storage, may facilitate the long-term and low-cost preservation and the transportation of DNA resources.


Assuntos
Bacillus subtilis/genética , Cromossomos Artificiais Bacterianos , Biblioteca Gênica , Vetores Genéticos , Genoma Bacteriano , Arabidopsis/genética , DNA Mitocondrial/genética , Escherichia coli/genética , Plasmídeos , Esporos Bacterianos
17.
Nucleic Acids Res ; 31(21): e133, 2003 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-14576333

RESUMO

A universal method to reconstitute sets of genes was developed. Owing to the intrinsic nature of the plasmid establishment mechanism in Bacillus subtilis, the assembly of five antibiotic resistance genes with a defined order and orientation was achieved. These five fragments and the plasmid have three-base protruding sequences at both ends. The protruding sequences are designed so that each fragment is ligated once in a row according to the pairing. Ligation by T4 DNA ligase in the presence of 150 mM NaCl and 10% polyethylene glycol at 37 degrees C yielded high molecular tandem repeat linear form DNA. This multimeric form of DNA was preferentially used for plasmid establishment in B.subtilis. The method, referred to as Ordered Gene Assembly in B.subtilis (OGAB), allows for the design of multiple fragments with very high efficiency and great fidelity.


Assuntos
Bacillus subtilis/genética , DNA Bacteriano/metabolismo , Ordem dos Genes/genética , Genes Bacterianos/genética , Plasmídeos/genética , Sequência de Bases , DNA Ligases/metabolismo , DNA Bacteriano/genética , Resistência a Medicamentos/genética , Escherichia coli/genética , Vetores Genéticos/genética , Dados de Sequência Molecular , Sensibilidade e Especificidade , Transformação Bacteriana
18.
Nucleic Acids Res ; 31(18): e112, 2003 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-12954788

RESUMO

A novel genome vector using the 4215 kb Bacillus subtilis genome provides for precise target cloning and processing of the cloned DNA to the desired structure. Each process highly dependent on homologous recombination in the host B.subtilis is distinguished from the other cloning systems. A 120 kb mouse jumonji (jmj) genomic gene was processed in the genome vector to give a series of truncated sub-megasized DNA. One of these truncated segments containing the first intron was copied in a plasmid by a recombinational transfer method developed for B.subtilis. DNA manipulation previously considered difficult is argued with respect to DNA size and accuracy.


Assuntos
Bacillus subtilis/genética , DNA/genética , Vetores Genéticos/genética , Genoma Bacteriano , Animais , Southern Blotting , Clonagem Molecular/métodos , DNA Bacteriano/genética , Camundongos , Recombinação Genética , Deleção de Sequência , Transformação Genética
19.
Sci Rep ; 5: 10655, 2015 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-25990947

RESUMO

In the era of synthetic biology, techniques for rapidly constructing a designer long DNA from short DNA fragments are desired. To realize this, we attempted to establish a method for one-step DNA assembly of unprecedentedly large numbers of fragments. The basic technology is the Ordered Gene Assembly in Bacillus subtilis (OGAB) method, which uses the plasmid transformation system of B. subtilis. Since this method doesn't require circular ligation products but needs tandem repeat ligation products, the degree of deviation in the molar concentration of the material DNAs is the only determinant that affects the efficiency of DNA assembly. The strict standardization of the size of plasmids that clone the DNA block and the measurement of the block in the state of intact plasmid improve the reliability of this step, with the coefficient of variation of the molar concentrations becoming 7%. By coupling this method with the OGAB method, one-step assembly of more than 50 DNA fragments becomes feasible.


Assuntos
Bacillus subtilis/genética , DNA Bacteriano/biossíntese , Biologia Sintética/métodos , Sequências de Repetição em Tandem/genética , Bacteriófago lambda/genética , Fragmentação do DNA , DNA Bacteriano/genética , Plasmídeos/genética , Transformação Genética
20.
J Biochem ; 134(4): 513-9, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14607977

RESUMO

Direct cloning of a long continuous genome segment in a Bacillus subtilis genome vector was demonstrated for the first time. Two small DNA fragments had to be installed in the vector prior to cloning. The DNA between these two fragments was cloned via homologous recombination. The efficiency of cloning was estimated using the 3,573-kb genome of a cyanobacterium, Synechocystis sp. PCC 6803. Recombinants were selected using the internal selection system of the Bacillus genome vector or with the antibiotic resistance marker in the cyanobacterial genome. Designated genomic segments as large as 77-kb were cloned by means of a single procedure. Cloning efficiency is affected by the molecular weight of the donor DNA and the size of the DNA to be cloned. The method is suitable for direct target cloning of large-sized DNA.


Assuntos
Bacillus subtilis/genética , DNA/química , Técnicas Genéticas , Genoma Bacteriano , Clonagem Molecular , Cianobactérias/genética , DNA/genética , Escherichia coli/metabolismo , Vetores Genéticos , Genoma , Genótipo , Modelos Genéticos , Mutagênese Sítio-Dirigida , Plasmídeos/metabolismo , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA