Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
BMC Cancer ; 17(1): 156, 2017 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-28235409

RESUMO

BACKGROUND: Neuroblastoma (NB), a tumor of the primitive neural crest, despite aggressive treatment portends a poor long-term survival for patients with advanced high stage NB. New treatment strategies are required. METHODS: We investigated coordinated targeting of essential homeostatic regulatory factors involved in cancer progression, histone deacetylases (HDACs) and carbonic anhydrases (CAs). RESULTS: We evaluated the antitumor potential of the HDAC inhibitor (HDACi), pyridylmethyl-N-{4-[(2-aminophenyl)-carbamoyl]-benzyl}-carbamate (MS-275) in combination with a pan CA inhibitor, acetazolamide (AZ) on NB SH-SY5Y, SK-N-SH and SK-N-BE(2) cells. The key observation was that the combination AZ + MS-275 significantly inhibited growth, induced cell cycle arrest and apoptosis, and reduced migration capacity of NB cell line SH-SY5Y. In addition, this combination significantly inhibited tumor growth in vivo, in a pre-clinical xenograft model. Evidence was obtained for a marked reduction in tumorigenicity and in the expression of mitotic, proliferative, HIF-1α and CAIX. NB xenografts of SH-SY5Y showed a significant increase in apoptosis. CONCLUSION: MS-275 alone at nanomolar concentrations significantly reduced the putative cancer stem cell (CSC) fraction of NB cell lines, SH-SY5Y and SK-N-BE(2), in reference to NT2/D1, a teratocarcinoma cell line, exhibiting a strong stem cell like phenotype in vitro. Whereas stemness genes (OCT4, SOX2 and Nanog) were found to be significantly downregulated after MS-275 treatment, this was further enhanced by AZ co-treatment. The significant reduction in initial tumorigenicity and subsequent abrogation upon serial xenografting suggests potential elimination of the NB CSC fraction. The significant potentiation of MS-275 by AZ is a promising therapeutic approach and one amenable for administration to patients given their current clinical utility.


Assuntos
Acetazolamida/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Benzamidas/farmacologia , Neuroblastoma/tratamento farmacológico , Piridinas/farmacologia , Acetazolamida/uso terapêutico , Animais , Antineoplásicos/uso terapêutico , Benzamidas/uso terapêutico , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/uso terapêutico , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Quimioterapia Combinada , Feminino , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Humanos , Camundongos , Piridinas/uso terapêutico , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Stem Cells ; 30(8): 1685-95, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22689594

RESUMO

Human embryonic stem cells (hESCs) have been reported to exert cytoprotective activity in the area of tissue injury. However, hypoxia/oxidative stress prevailing in the area of injury could activate p53, leading to death and differentiation of hESCs. Here we report that when exposed to hypoxia/oxidative stress, a small fraction of hESCs, namely the SSEA3+/ABCG2+ fraction undergoes a transient state of reprogramming to a low p53 and high hypoxia inducible factor (HIF)-2α state of transcriptional activity. This state can be sustained for a period of 2 weeks and is associated with enhanced transcriptional activity of Oct-4 and Nanog, concomitant with high teratomagenic potential. Conditioned medium obtained from the post-hypoxia SSEA3+/ABCG2+ hESCs showed cytoprotection both in vitro and in vivo. We termed this phenotype as the "enhanced stemness" state. We then demonstrated that the underlying molecular mechanism of this transient phenotype of enhanced stemness involved high Bcl-2, fibroblast growth factor (FGF)-2, and MDM2 expression and an altered state of the p53/MDM2 oscillation system. Specific silencing of HIF-2α and p53 resisted the reprogramming of SSEA3+/ABCG2+ to the enhanced stemness phenotype. Thus, our studies have uncovered a unique transient reprogramming activity in hESCs, the enhanced stemness reprogramming where a highly cytoprotective and undifferentiated state is achieved by transiently suppressing p53 activity. We suggest that this transient reprogramming is a form of stem cell altruism that benefits the surrounding tissues during the process of tissue regeneration.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Células-Tronco Embrionárias/fisiologia , Proteína Supressora de Tumor p53/metabolismo , Animais , Diferenciação Celular/fisiologia , Hipóxia Celular/fisiologia , Sobrevivência Celular/fisiologia , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Estresse Oxidativo/fisiologia , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Ratos , Proteína Supressora de Tumor p53/genética , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA