Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Biochem Biophys Res Commun ; 487(3): 734-739, 2017 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-28450108

RESUMO

Sulfoquinovosyl diacylglycerol (SQDG) is present in the membranes of cyanobacteria or their descendants, plastids at species-dependent levels. We investigated the physiological significance of the intrinsic SQDG content in the cyanobacterium Synechococcus elongatus PCC 7942, with the use of its mutant, in which the genes for SQDG synthesis, sqdB and sqdX, were overexpressed. The mutant showed a 1.3-fold higher content of SQDG (23.6 mol% relative to total cellular lipids, cf., 17.1 mol% in the control strain) with much less remarkable effects on the other lipid classes. Simultaneously observed were 1.6- to 1.9-fold enhanced mRNA levels for the genes responsible for the synthesis of the lipids other than SQDG, as if to compensate for the SQDG overproduction. Meanwhile, the mutant showed no injury to cell growth, however, cell length was increased (6.1 ± 2.3, cf., 3.8 ± 0.8 µm in the control strain). Accordingly with this, a wide range of genes responsible for cell division were 1.6-2.4-fold more highly expressed in the mutant. These results suggested that a regulatory mechanism for lipid homeostasis functions in the mutant, and that SQDG has to be kept from surpassing the intrinsic content in S. elongatus for repression of the abnormal expression of cell division-related genes and, inevitably, for normal cell division.


Assuntos
Tamanho Celular , Glicolipídeos/biossíntese , Metabolismo dos Lipídeos/fisiologia , Synechococcus/citologia , Synechococcus/metabolismo , Regulação para Cima/fisiologia , Glicolipídeos/genética
2.
Plant Cell Physiol ; 57(1): e6, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26746174

RESUMO

Pleurochrysis is a coccolithophorid genus, which belongs to the Coccolithales in the Haptophyta. The genus has been used extensively for biological research, together with Emiliania in the Isochrysidales, to understand distinctive features between the two coccolithophorid-including orders. However, molecular biological research on Pleurochrysis such as elucidation of the molecular mechanism behind coccolith formation has not made great progress at least in part because of lack of comprehensive gene information. To provide such information to the research community, we built an open web database, the Pleurochrysome (http://bioinf.mind.meiji.ac.jp/phapt/), which currently stores 9,023 unique gene sequences (designated as UNIGENEs) assembled from expressed sequence tag sequences of P. haptonemofera as core information. The UNIGENEs were annotated with gene sequences sharing significant homology, conserved domains, Gene Ontology, KEGG Orthology, predicted subcellular localization, open reading frames and orthologous relationship with genes of 10 other algal species, a cyanobacterium and the yeast Saccharomyces cerevisiae. This sequence and annotation information can be easily accessed via several search functions. Besides fundamental functions such as BLAST and keyword searches, this database also offers search functions to explore orthologous genes in the 12 organisms and to seek novel genes. The Pleurochrysome will promote molecular biological and phylogenetic research on coccolithophorids and other haptophytes by helping scientists mine data from the primary transcriptome of P. haptonemofera.


Assuntos
Bases de Dados Genéticas , Haptófitas/genética , Transcriptoma , Etiquetas de Sequências Expressas , Ontologia Genética , Anotação de Sequência Molecular
3.
Biochem Biophys Res Commun ; 477(4): 854-860, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27372425

RESUMO

Sulfoquinovosyl diacylglycerol, which mainly comprises thylakoid membranes in oxygenic photosynthetic organisms, plays species-dependent roles in freshwater microbes. In this study, a sulfoquinovosyl-diacylglycerol deficient mutant was generated in a cyanobacterium, Synechococcus sp. PCC 7002, for the first time among marine microbes to gain more insight into its physiological significance. The mutation had little deleterious impact on photoautotrophic cell growth, and functional and structural properties of the photosystem II complex. These findings were similar to previous observations for a freshwater cyanobacterium, Synechococcus elongatus PCC 7942, but were distinct from those for another freshwater cyanobacterium, Synechocystis sp. PCC 6803, and a green alga, Chlamydomonas reinhardtii, both of which require sulfoquinovosyl diacylglycerol for cell growth and/or photosystem II. Therefore, the functionality of PSII to dispense with sulfoquinovosyl diacylglycerol in Synechococcus sp. PCC 7002, similar to that in Synechococcus elongatus PCC 7942, seemed to have been excluded from the evolution of the PSII complex from cyanobacteria to green algal chloroplasts. Meanwhile, sulfoquinovosyl diacylglycerol was found to contribute to photoheterotrophic growth of Synechococcus sp. PCC 7002, which revealed a novel species-dependent strategy for utilizing SQDG in physiological processes.


Assuntos
Processos Autotróficos/fisiologia , Proliferação de Células/fisiologia , Glicolipídeos/metabolismo , Fotossíntese/fisiologia , Synechococcus/fisiologia , Synechococcus/efeitos da radiação , Organismos Aquáticos , Processos Autotróficos/efeitos da radiação , Proliferação de Células/efeitos da radiação , Glucosiltransferases/metabolismo , Luz , Lipídeos/fisiologia , Fotossíntese/efeitos da radiação , Especificidade da Espécie , Synechococcus/classificação
4.
Biochem Biophys Res Commun ; 470(1): 123-129, 2016 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-26768360

RESUMO

Sulfoquinovosyl diacylglycerol is one of the lipids that construct thylakoid membranes, and is distributed from cyanobacteria to plastids in plants including a red lineage. One of the most primitive red algae, Cyanidioschyzon melorae, similar to cyanobacteria and green plants, possesses homologs of the SQD1 and SQD2 genes that code for UDP-sulfoquinovose and sulfoquinovosyl diacylglycerol synthases, respectively, for the synthesis of sulfoquinovosyl diacylglycerol. We here revealed the structural properties of SQD1 and SQD2 homologs in C. melorae intrinsic to those of the authentic proteins, and verified their enzymatic functions through heterologous expression in cyanobacterial disruptants as to the corresponding genes. The results demonstrated that the system of sulfoquinovosyl diacylglycerol synthesis could have been conserved through evolution of cyanobacteria to plastids in a red lineage, which is compatible with the monophyletic origin of plastids.


Assuntos
Proteínas de Algas/genética , Proteínas de Algas/metabolismo , Lipídeos/biossíntese , Rodófitas/classificação , Rodófitas/fisiologia , Sequência de Aminoácidos , Sequência de Bases , Sequência Conservada , Dados de Sequência Molecular , Especificidade da Espécie
5.
Plant Cell Physiol ; 56(8): 1521-32, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26009593

RESUMO

Excess sulfite is well known to have toxic effects on photosynthetic activities and growth in plants, however, so far, the behavior of the photosynthetic apparatus during sulfite-stress has not been characterized as to the responsible proteins or genes. Here, the effects of sulfite on photosystem complexes were investigated in a cyanobacterium, Synechococcus elongatus PCC 7942, a possible model organism of chloroplasts. Culturing of the cells for 24 h in the presence of 10 mM sulfite retarded cell growth of the wild type, concomitantly with synthesis of Chl and phycobilisome repressed. The excess sulfite simultaneously repressed photosynthesis by more than 90%, owing largely to structural destabilization and resultant inactivation of the PSII complex, which seemed to consequently retard the cell growth. Notably, the PsbO protein, one of the subunits that construct the water-splitting system of PSII, was retained at a considerable level, and disruption of the psbO gene led to higher sensitivity of photosynthesis and growth to sulfite. Meanwhile, the PSI complex showed monomerization of its trimeric configuration with little effect on the activity. The structural alterations of these PS complexes depended on light. Our data provide evidence for quantitative decreases in the photosystem complex(es) including their antenna(e), structural alterations of the PSI and PSII complexes that would modulate their functions, and a crucial role of psbO in PSII protection, in Synechococcus cells during sulfite-stress. We suggest that the reconstruction of the photosystem complexes is beneficial to cell survival.


Assuntos
Complexo de Proteína do Fotossistema I , Complexo de Proteína do Fotossistema II , Sulfitos/toxicidade , Synechococcus/fisiologia , Proteínas de Bactérias/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Clorofila/metabolismo , Luz , Fotossíntese/efeitos dos fármacos , Complexo de Proteína do Fotossistema I/química , Complexo de Proteína do Fotossistema I/genética , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Ficobilissomas/efeitos dos fármacos , Estresse Fisiológico , Synechococcus/efeitos dos fármacos , Synechococcus/genética , Synechococcus/efeitos da radiação , Tilacoides/efeitos dos fármacos
6.
Planta ; 241(6): 1453-62, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25732003

RESUMO

MAIN CONCLUSION: In summary, we could show the involvement of a Hik8-cascade in the expression of genes involved in the glycolytic and OPP pathways induced by GPL, and another signal pathway under photosynthetic conditions in Synechocystis . The Hik8-cascade under GPL conditions may regulate glucose degradation to produce some energy and carbon compounds. This cascade might be important for the supply of organic materials such as amino acids and nucleotides through enhancement of the rates of the glycolysis and OPP pathways. Histidine kinase Hik8 upregulates the expression of one of the important glycolytic genes, fbaA, via sll1330 under heterotrophic growth conditions (i.e., in the presence of glucose with an indispensable short period of light) in Synechocystis sp. PCC 6803. In this study, expression of the genes for the glycolytic and OPP pathways was investigated using the wild type, and disruption mutants of Hik8 and sll1330, to determine whether or not the Hik8-involving signal transduction system generally regulates glucose catabolism. In the wild type, all the genes for the glycolytic and OPP pathways were upregulated under the same conditions as for fbaA. Analyses of the disruption mutants suggested that the signal transduction system involving Hik8 and Sll1330 plays a key role in the upregulation of genes such as pfkA, pgmB, and glk, and also that Hik8 induces genes including gap1 and pgk independently of Sll1330. This complicated signal transduction cascade, designated as the Hik8-cascade, occurs under heterotrophic growth with light pulses. In addition, a disruption mutant of a putative histidine kinase, sll1334, exhibited growth and gene expression patterns that suggested it to be a negative regulator in the cascade. Possible histidine kinases and response regulators as candidates for other components in the cascade are discussed.


Assuntos
Proteínas de Bactérias/genética , Genes Bacterianos , Glucose/metabolismo , Transdução de Sinais/genética , Synechocystis/genética , Regulação para Cima/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Glicólise/genética , Processos Heterotróficos/genética , Modelos Biológicos , Via de Pentose Fosfato/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
7.
Appl Microbiol Biotechnol ; 99(3): 1513-9, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25283836

RESUMO

The demand for rare earth elements has increased dramatically in recent years because of their numerous industrial applications, and considerable research efforts have consequently been directed toward recycling these materials. The accumulation of metals in microorganisms is a low-cost and environmentally friendly method for the recovery of metals present in the environment at low levels. Numerous metals, including rare earth elements, can be readily dissolved in aqueous acid, but the efficiency of metal biosorption is usually decreased under the acidic conditions. In this report, we have investigated the use of the sulfothermophilic red alga Galdieria sulphuraria for the recovery of metals, with particular emphasis on the recovery of rare earth metals. Of the five different growth conditions investigated where G. sulphuraria could undergo an adaptation process, Nd(III), Dy(III), and Cu(II) were efficiently recovered from a solution containing a mixture of different metals under semi-anaerobic heterotrophic condition at a pH of 2.5. G. sulphuraria also recovered Nd(III), Dy(III), La(III), and Cu(II) with greater than 90% efficiency at a concentration of 0.5 ppm. The efficiency remained unchanged at pH values in the range of 1.5-2.5. Furthermore, at pH values in the range of 1.0-1.5, the lanthanoid ions were collected much more efficiently into the cell fractions than Cu(II) and therefore successfully separated from the Cu(II) dissolved in the aqueous acid. Microscope observation of the cells using alizarin red suggested that the metals were accumulating inside of the cells. Experiments using dead cells suggested that this phenomenon was a biological process involving specific activities within the cells.


Assuntos
Fracionamento Químico/métodos , Metais Terras Raras/isolamento & purificação , Rodófitas/metabolismo , Ácidos/química , Concentração de Íons de Hidrogênio , Metais Terras Raras/química , Metais Terras Raras/metabolismo , Rodófitas/química , Rodófitas/crescimento & desenvolvimento
8.
Arch Biochem Biophys ; 562: 9-21, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25107532

RESUMO

To investigate the functional properties of 10 α-glucan branching enzymes (BEs) from various sources, we determined the chain-length distribution of BE enzymatic products and their phosphorylase-limit dextrins (Φ-LD). All BEs could be classified into either of the three rice BE isozymes: OsBEI, OsBEIIa, or OsBEIIb. Escherichia coli BE (EcoBE) had the same enzymatic properties as OsBEI, while Synechococcus elongatus BE (ScoBE) and Chlorella kessleri BE (ChlBE) had BEIIb-type properties. Human BE (HosBE), yeast BE (SacBE), and two Porphyridium purpureum BEs (PopBE1 and PopBE2) exhibited the OsBEIIa-type properties. Analysis of chain-length profile of Φ-LD of the BE reaction products revealed that EcoBE, ScoBE, PopBE1, and PopBE2 preferred A-chains as acceptors, while OsBEIIb used B-chains more frequently than A-chains. Both EcoBE and ScoBE specifically formed the branch linkages at the third glucose residue from the reducing end of the acceptor chain. The present results provide evidence for the first time that great variation exists as to the preference of BEs for their acceptor chain, either A-chain or B-chain. In addition, EcoBE and ScoBE recognize the location of branching points in their acceptor chain during their branching reaction. Nevertheless, no correlation exists between the primary structure of BE proteins and their enzymatic characteristics.


Assuntos
Enzima Ramificadora de 1,4-alfa-Glucana/química , Glucanos/química , Amilopectina/química , Chlorella/enzimologia , Dextrinas/química , Escherichia coli/enzimologia , Fungos/enzimologia , Glicogênio/química , Humanos , Isoenzimas/química , Oryza/enzimologia , Fosforilases/química , Filogenia , Porphyridium/enzimologia , Proteínas Recombinantes/química , Especificidade da Espécie , Amido/química , Synechococcus/enzimologia
9.
Microorganisms ; 11(5)2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37317151

RESUMO

Eukaryotic photosynthetic organisms synthesize triacylglycerols, which are crucial physiologically as major carbon and energy storage compounds and commercially as food oils and raw materials for carbon-neutral biofuel production. TLC analysis has revealed triacylglycerols are present in several cyanobacteria. However, mass spectrometric analysis has shown that freshwater cyanobacterium, Synechocystis sp. PCC 6803, contains plastoquinone-B and acyl plastoquinol with triacylglycerol-like TLC mobility, concomitantly with the absence of triacylglycerol. Synechocystis contains slr2103, which is responsible for the bifunctional synthesis of plastoquinone-B and acyl plastoquinol and also for NaCl-stress acclimatizing cell growth. However, information is limited on the taxonomical distribution of these plastoquinone lipids, and their synthesis genes and physiological roles in cyanobacteria. In this study, a euryhaline cyanobacterium, Synechococcus sp. PCC 7002, shows the same plastoquinone lipids as those in Synechocystis, although the levels are much lower than in Synechocystis, triacylglycerol being absent. Furthermore, through an analysis of a disruptant to the homolog of slr2103 in Synechococcus, it is found that the slr2103 homolog in Synechococcus, similar to slr2103 in Synechocystis, contributes bifunctionally to the synthesis of plastoquinone-B and acyl plastoquinol; however, the extent of the contribution of the homolog gene to NaCl acclimatization is smaller than that of slr2103 in Synechocystis. These observations suggest strain- or ecoregion-dependent development of the physiological roles of plastoquinone lipids in cyanobacteria and show the necessity to re-evaluate previously identified cyanobacterial triacylglycerol through TLC analysis with mass spectrometric techniques.

10.
Front Plant Sci ; 14: 1181180, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37180399

RESUMO

A cyanobacterium, Synechocystis sp. PCC 6803, contains a lipid with triacylglycerol-like TLC mobility but its identity and physiological roles remain unknown. Here, on ESI-positive LC-MS2 analysis, it is shown that the triacylglycerol-like lipid (lipid X) is related to plastoquinone and can be grouped into two subclasses, Xa and Xb, the latter of which is esterified by 16:0 and 18:0. This study further shows that a Synechocystis homolog of type-2 diacylglycerol acyltransferase genes, slr2103, is essential for lipid X synthesis: lipid X disappears in a Synechocystis slr2103-disruptant whereas it appears in an slr2103-overexpressing transformant (OE) of Synechococcus elongatus PCC 7942 that intrinsically lacks lipid X. The slr2103 disruption causes Synechocystis cells to accumulate plastoquinone-C at an abnormally high level whereas slr2103 overexpression in Synechococcus causes the cells to almost completely lose it. It is thus deduced that slr2103 encodes a novel acyltransferase that esterifies 16:0 or 18:0 with plastoquinone-C for the synthesis of lipid Xb. Characterization of the slr2103-disruptant in Synechocystis shows that slr2103 contributes to sedimented-cell growth in a static culture, and to bloom-like structure formation and its expansion by promoting cell aggregation and floatation upon imposition of saline stress (0.3-0.6 M NaCl). These observations provide a basis for elucidation of the molecular mechanism of a novel cyanobacterial strategy to acclimatize to saline stress, and one for development of a system of seawater-utilization and economical harvesting of cyanobacterial cells with high-value added compounds, or blooming control of toxic cyanobacteria.

11.
Front Plant Sci ; 14: 1175080, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37342150

RESUMO

Attached culture allows high biomass productivity and is a promising biomass cultivating system because neither a huge facility area nor a large volume of culture medium are needed. This study investigates photosynthetic and transcriptomic behaviors in Parachlorella kessleri cells on a solid surface after their transfer from liquid culture to elucidate the physiological and gene-expression regulatory mechanisms that underlie their vigorous proliferation. The chlorophyll content shows a decrease at 12 h after the transfer; however, it has fully recovered at 24 h, suggesting temporary decreases in the amounts of light harvesting complexes. On PAM analysis, it is demonstrated that the effective quantum yield of PSII decreases at 0 h right after the transfer, followed by its recovery in the next 24 h. A similar changing pattern is observed for the photochemical quenching, with the PSII maximum quantum yield remaining at an almost unaltered level. Non-photochemical quenching was increased at both 0 h and 12 h after the transfer. These observations suggest that electron transfer downstream of PSII but not PSII itself is only temporarily damaged in solid-surface cells just after the transfer, with light energy in excess being dissipated as heat for PSII protection. It thus seems that the photosynthetic machinery acclimates to high-light and/or dehydration stresses through its temporal size-down and functional regulation that start right after the transfer. Meanwhile, transcriptomic analysis by RNA-Seq demonstrates temporary upregulation at 12 h after the transfer as to the expression levels of many genes for photosynthesis, amino acid synthesis, general stress response, and ribosomal subunit proteins. These findings suggest that cells transferred to a solid surface become stressed immediately after transfer but can recover their high photosynthetic activity through adaptation of photosynthetic machinery and metabolic flow as well as induction of general stress response mechanisms within 24 h.

12.
Plant Cell Physiol ; 53(10): 1720-7, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22915573

RESUMO

Fructose 1,6-bisphosphate aldolase (FBA) is an enzyme involved in both glycolytic and photosynthetic reactions in photosynthetic organisms. In prokaryotes, the bidirectional reaction proceeds in the same cellular compartment, i.e. the cytoplasm. Expression of the FBA gene, fbaA, is induced through two independent pathways, stimulated by continuous light and by glucose plus pulsed light (GPL), in a cyanobactrium, Synechocystis sp. PCC 6803. Under GPL conditions, glucose can be replaced by glucose analogs that are not even metabolized in a cell. Analyses of transcripts in deletion mutants suggested that both a histidine kinase, Hik8, and a response regulator, Sll1330, played important roles as signal components in fbaA expression under GPL conditions, but not under photosynthetic conditions. Analysis of a transformant in which sll1330 expression was enhanced demonstrated that fbaA expression was induced at least partially even without glucose, but for its further induction a pulsed light stimulus was required. These results substantiated that there are two light-dependent regulatory pathways for aldolase gene expression in this cyanobacterium.


Assuntos
Frutose-Bifosfato Aldolase/genética , Regulação Bacteriana da Expressão Gênica , Glucose/metabolismo , Synechocystis/genética , Synechocystis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Frutose-Bifosfato Aldolase/metabolismo , Redes Reguladoras de Genes , Histidina Quinase , Luz , Mutação , Fotossíntese/genética , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Transdução de Sinais
13.
Planta ; 236(5): 1395-403, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22722676

RESUMO

Arsenate resistance has been used for screening for photosynthetic mutants of Chlamydomonas, since photosynthetic mutants, such as CC981 defective in phosphoribulokinase, were shown to have arsenate resistance. Also, another type of arsenate-resistant mutants, including AR3 that lacks a homolog of a phosphate (Pi) transporter, PTB1, has been isolated. We investigated the uptake of Pi and arsenate, and the gene expression of Pi transporters, which are involved in both Pi and arsenate transport, in mutants CC981 and AR3. In the wild type, both Pi and arsenate uptake were initially high, but were inactivated in the presence of arsenate with time, especially in the dark. In contrast, both mutants were shown to exhibit higher Pi uptake, but lower arsenate uptake than the wild type, regardless of the presence or absence of light. Then, the gene expression of Pi transporters in the cells used for the uptake measurements was investigated and compared between the mutants and the wild type. In CC981, the mRNA levels of PTA2 and PTA4 were higher, while those of PTB3 and PTB5 were lower, as compared with in the wild type. In AR3, those of PTA2 and PTB2 were higher, but that of PTB5 was lower than in the wild type. These findings suggest that the arsenate resistance shown by the mutants in light is due to reduction of arsenate uptake probably through the down-regulation of some Pi transporter expression, while the Pi uptake maintained even in the dark is possibly related to higher expression of other Pi transporter(s) than in the wild type.


Assuntos
Arsênio/farmacocinética , Chlamydomonas reinhardtii/efeitos dos fármacos , Chlamydomonas reinhardtii/genética , Mutação , Fotossíntese/genética , Arsênio/toxicidade , Chlamydomonas reinhardtii/metabolismo , Resistência a Medicamentos , Luz , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/metabolismo , Fosfatos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
14.
Commun Biol ; 5(1): 19, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35017659

RESUMO

Membrane lipid remodeling contributes to the environmental acclimation of plants. In the green lineage, a betaine lipid, diacylglyceryl-N,N,N-trimethylhomoserine (DGTS), is included exclusively among green algae and nonflowering plants. Here, we show that the green alga Chlorella kessleri synthesizes DGTS under phosphorus-deficient conditions through the eukaryotic pathway via the ER. Simultaneously, phosphatidylcholine and phosphatidylethanolamine, which are similar to DGTS in their zwitterionic properties, are almost completely degraded to release 18.1% cellular phosphorus, and to provide diacylglycerol moieties for a part of DGTS synthesis. This lipid remodeling system that substitutes DGTS for extrachloroplast phospholipids to lower the P-quota operates through the expression induction of the BTA1 gene. Investigation of this lipid remodeling system is necessary in a wide range of lower green plants for a comprehensive understanding of their phosphorus deficiency acclimation strategies.


Assuntos
Chlorella , Lipídeos de Membrana , Triglicerídeos , Membrana Celular/química , Membrana Celular/metabolismo , Membrana Celular/fisiologia , Chlorella/citologia , Chlorella/metabolismo , Chlorella/fisiologia , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Estresse Fisiológico/fisiologia , Triglicerídeos/química , Triglicerídeos/metabolismo
15.
Front Plant Sci ; 13: 967165, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36051298

RESUMO

Most rhodophytes synthesize semi-amylopectin as a storage polysaccharide, whereas some species in the most primitive class (Cyanidiophyceae) make glycogen. To know the roles of isoamylases in semi-amylopectin synthesis, we investigated the effects of isoamylase gene (CMI294C and CMS197C)-deficiencies on semi-amylopectin molecular structure and starch granule morphology in Cyanidioschyzon merolae (Cyanidiophyceae). Semi-amylopectin content in a CMS197C-disruption mutant (ΔCMS197C) was not significantly different from that in the control strain, while that in a CMI294C-disruption mutant (ΔCMI294C) was much lower than those in the control strain, suggesting that CMI294C is essential for semi-amylopectin synthesis. Scanning electron microscopy showed that the ΔCMI294C strain contained smaller starch granules, while the ΔCMS197C strain had normal size, but donut-shaped granules, unlike those of the control strain. Although the chain length distribution of starch from the control strain displayed a semi-amylopectin pattern with a peak around degree of polymerization (DP) 11-13, differences in chain length profiles revealed that the ΔCMS197C strain has more short chains (DP of 3 and 4) than the control strain, while the ΔCMI294C strain has more long chains (DP ≥12). These findings suggest that CMI294C-type isoamylase, which can debranch a wide range of chains, probably plays an important role in semi-amylopectin synthesis unique in the Rhodophyta.

16.
Environ Sci Technol ; 45(23): 9990-7, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22008013

RESUMO

To propose new molecular markers for tire-wear emissions, four dihydroresin acids, that is, 8-isopimaren-18-oic acid (I), 8-pimaren-18-oic acid (II), 13ß(H)-abieten-18-oic acid (III), and 13α(H)-abiet-8-en-18-oic acid (IV), were identified and investigated for source specificities, distributions, and environmental stabilities. The absence of I-IV in natural sources and the linear correlations between dihydroresin acids with different skeletons in tires and in environmental samples demonstrated that I-IV are specific markers for synthetic rubbers. The ratio of III + IV to the sum of III + IV plus abietic acid showed the resin acids distribution between different environmental compartments receiving contributions from traffic and natural sources. The physicochemical properties and results of photolysis experiments suggested that I-IV can set lower limits for tire-wear contributions to environmental loads of particulate matter (PM) and polycyclic aromatic hydrocarbons with molecular weight ≥202. By comparing III + IV concentrations or (III+IV)/pyrene or (III+IV)/benzo[a]pyrene ratios in tires and those in environmental matrices, the contributions of tire-wear emissions to PM, pyrene, and benzo[a]pyrene were estimated to be 0.68 ± 0.54%, 6.9 ± 4.8%, and 0.37 ± 0.18% in roadside PM and 0.83 ± 0.21%, 0.88 ± 0.52%, and 0.08 ± 0.06% in rooftop PM.


Assuntos
Poluentes Atmosféricos/análise , Biopolímeros/análise , Monitoramento Ambiental/métodos , Material Particulado/análise
17.
Biosci Biotechnol Biochem ; 75(3): 522-30, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21389618

RESUMO

We examined the short-term metabolic processes of arsenate for 24 h in a freshwater unicellular green alga, Chlamydomonas reinhardtii wild-type strain CC-125. The arsenic species in the algal extracts were identified by high-performance liquid chromatography/inductively coupled plasma mass spectrometry after water extraction using a sonicator. Speciation analyses of arsenic showed that the levels of arsenite, arsenate, and methylarsonic acid in the cells rapidly increased for 30 min to 1 h, and those of dimethylarsinic acid and oxo-arsenosugar-glycerol also tended to increase continuously for 24 h, while that of oxo-arsenosugar-phosphate was quite low and fluctuated throughout the experiment. These results indicate that this alga can rapidly biotransform arsenate into oxo-arsenosugar-glycerol for at least 10 min and then oxo-arsenosugar-phosphate through both reduction of incorporated arsenate to arsenite and methylation of arsenite and/or arsenate retained in the cells to dimethylarsinic acid via methylarsonic acid as an possible intermediate.


Assuntos
Arseniatos/metabolismo , Arsênio/metabolismo , Chlamydomonas reinhardtii/metabolismo , Monossacarídeos/metabolismo , Arsenicais/metabolismo , Arsenitos/metabolismo , Biotransformação , Ácido Cacodílico/metabolismo , Cromatografia Líquida de Alta Pressão , Água Doce , Espectrometria de Massas , Metilação , Sonicação
18.
Toxicol Rep ; 8: 1937-1947, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34926172

RESUMO

Carbonic anhydrase (CA) catalyzes reversible hydration of CO2 to HCO3 - to mediate pH and ion homeostasis. Some chemical pollutants have been reported to have inhibitory effects on fish CA. In this study, we investigated effects of a CA inhibitor ethoxyzolamide (EZA) on neuromasts development during zebrafish embryogenesis, since embryogenesis in aquatic organisms can be particularly sensitive to water pollution. EZA caused alteration of pH and calcium concentration and production of reactive oxygen species (ROS) in larvae, and induced apoptosis in hair cells especially in the otic neuromast, in which CA2 was distributed on the body surface. mRNA levels of apoptotic genes and caspase activities were increased by EZA, whereas anti-oxidants and apoptotic inhibitors, Bax, NF-κB, and p53 inhibitors significantly relieved the induction of hair cell death. Also, mRNA levels of Bip and CHOP, which are induced in response to ER stress, were upregulated by EZA, suggesting that EZA induces otic hair cell apoptosis via the intrinsic mitochondrial pathway and ER stress. Our results demonstrated an essential role of CA in neuromast development via maintenance of ion transport and pH, and that the CA, which is directly exposed to the ambient water, shows marked sensitivity to EZA.

19.
Plant Cell Physiol ; 51(5): 682-93, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20385610

RESUMO

The storage glucans of Cyanidioschyzon merolae [clade L-1 (cyanidian algae), order Porphyridiales, subclass Bangiophycidae], which is considered to be one of the most primitive rhodophytes, were analyzed to understand the early evolution of the glucan structure in the Rhodophyta. Chain-length distribution analysis of the glucans of cyanidian algae demonstrated that while the glucans of Cyanidium caldarium and Galdieria sulphuraria are of the glycogen type, those of C. merolae are of the semiamylopectin type, as in other lineages of the Rhodophyta. Gel permeation chromatography, however, showed that the glucans of C. merolae do not include amylose, being different from those of other Bangiophycidae species. Identification by MALDI-TOF-MS and enzyme assaying of glucan granule-bound proteins indicated that phosphorylase, but not starch synthase, is included. Thus, C. merolae has an unusual glucan and bound-protein composition for the Bangiophycidae, appearing to be a member of the Florideophycidae. The finding that the alga does not contain amylose or the related enzyme, granule-bound starch synthase, is, however, consistent with previously reported results of molecular phylogenetic analysis of starch synthases. Our results support an evolutionary scenario defined by the loss of starch and reversion to glycogen synthesis during the evolution of cyanidian algae, and suggest the possibility that a C. merolae-like primitive rhodophyte might have evolved into the Florideophycidae.


Assuntos
Amilopectina/química , Glucanos/química , Rodófitas/química , Amilose , Cromatografia em Gel , Ensaios Enzimáticos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Amido Fosforilase/análise , Sintase do Amido
20.
Appl Environ Microbiol ; 76(10): 3153-9, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20363800

RESUMO

ADP-glucose pyrophosphorylase (AGPase) and glycogen synthase (GS) catalyze the first two reactions of glycogen synthesis in cyanobacteria. Mutants defective in each of these enzymes in Synechococcus elongatus PCC 7942 were constructed and characterized. Activities of the corresponding enzymes in the selected mutants were virtually undetectable, and their ability to synthesize glycogen was entirely abolished. The maximal activities of photosynthetic O(2) evolution and the rates of respiration in the dark were significantly decreased in the mutants compared to those in wild-type cells. Addition of 0.2 M NaCl or 3 mM H(2)O(2) to liquid cultures markedly inhibited the growth of the AGPase and GS mutants, while the same treatment had only marginal effects on the wild type. These results suggest a significant role for storage polysaccharides in tolerance to salt or oxidative stress.


Assuntos
Metabolismo dos Carboidratos , Glicogênio/biossíntese , Mutação/genética , Synechococcus/enzimologia , Synechococcus/genética , Carboidratos/análise , Clorofila/análise , Clorofila A , Glucose-1-Fosfato Adenililtransferase/genética , Glucose-1-Fosfato Adenililtransferase/metabolismo , Glicogênio Sintase/genética , Glicogênio Sintase/metabolismo , Peróxido de Hidrogênio/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Oxigênio/análise , Fotossíntese/efeitos dos fármacos , Ficocianina/análise , Cloreto de Sódio/farmacologia , Synechococcus/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA