Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Neurochem Res ; 42(11): 3125-3139, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28884396

RESUMO

Ginseng (Panax ginseng), an herbal medicine, has been used to prevent neurodegenerative disorders. Ginsenosides (e.g., Re, Rb1, or Rg1) were obtained from Korean mountain cultivated ginseng. The anticonvulsant activity of ginsenoside Re (20 mg/kg/day × 3) against trimethyltin (TMT) insult was the most pronounced out of ginsenosides (e.g., Re, Rb1, and Rg1). Re itself did not significantly alter tumor necrosis factor-α (TNF-α), interferon-ϒ (IFN-ϒ), and interleukin-1ß (IL-1ß) expression, however, it significantly increases the interleukin-6 (IL-6) expression. In addition, Re attenuated the TMT-induced decreases in IL-6 protein level. Therefore, IL-6 knockout (-/-) mice were employed to investigate whether Re requires IL-6-dependent neuroprotective activity against TMT toxicity. Re significantly attenuated TMT-induced lipid peroxidation, protein peroxidation, and reactive oxygen species in the hippocampus. Re-mediated antioxidant effects were more pronounced in IL-6 (-/-) mice than in WT mice. Consistently, TMT-induced increase in c-Fos-immunoreactivity (c-Fos-IR), TUNEL-positive cells, and nuclear chromatin clumping in the dentate gyrus of the hippocampus were significantly attenuated by Re. Furthermore, Re attenuated TMT-induced proapoptotic changes. Protective potentials by Re were comparable to those by recombinant IL-6 protein (rIL-6) against TMT-insult in IL-6 (-/-) mice. Moreover, treatment with a phosphoinositol 3-kinase (PI3K) inhibitor, LY294002 (1.6 µg, i.c.v) counteracted the protective potential mediated by Re or rIL-6 against TMT insult. The results suggest that ginsenoside Re requires IL-6-dependent PI3K/Akt signaling for its protective potential against TMT-induced neurotoxicity.


Assuntos
Ginsenosídeos/farmacologia , Interleucina-6/deficiência , Fármacos Neuroprotetores/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Compostos de Trimetilestanho/toxicidade , Animais , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Panax , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Compostos de Trimetilestanho/antagonistas & inibidores
2.
Planta Med ; 83(17): 1342-1350, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28561205

RESUMO

Panax ginseng is the most widely used herbal medicine for improving cognitive functions. The pharmacological activity and underlying mechanisms of mountain-cultivated ginseng, however, have yet to be clearly elucidated, in particular, against trimethyltin-induced cognitive dysfunction. We previously reported that interleukin-6 plays a protective role against trimethyltin-induced cognitive dysfunction. Because of this, we have implemented a study system that uses interleukin-6 null (-/-) and wild-type mice. Interestingly, mountain-cultivated ginseng significantly upregulated interleukin-6 expression. With this study, we sought to determine whether the interleukin-6-dependent modulation of the Janus kinase 2/signal transducer activator of transcription 3 and extracellular signal-regulated kinase signaling network is also associated with the pharmacological activity of mountain-cultivated ginseng against trimethyltin-induced cognitive dysfunction. Trimethyltin treatment (2.4 mg/kg, intraperitoneal) causes the downregulation of Janus kinase 2/signal transducer activator of transcription 3, extracellular signal-regulated kinase signaling, and impairment of the cholinergic system. We found that mountain-cultivated ginseng treatment (50 mg/kg, intraperitoneal) significantly attenuated cognitive impairment normally induced by trimethyltin by upregulating p-Janus kinase 2/signal transducer activator of transcription 3, p-extracellular signal-regulated kinase signaling, and the cholinergic system. Trimethyltin-induced cognitive impairments were more pronounced in interleukin-6 (-/-) mice than wild-type mice, and they were markedly reduced by treatment with either mountain-cultivated ginseng or recombinant interleukin-6 protein (6 ng, intracerebroventricular). Additionally, treatment with either AG490 (20 mg/kg, intraperitoneal), a Janus kinase 2/signal transducer activator of transcription 3 inhibitor, or U0126 (2 µg/head, intracerebroventricular), an extracellular signal-regulated kinase inhibitor, reversed the effects of mountain-cultivated ginseng treatment. The effects of mountain-cultivated ginseng treatment were comparable to those of recombinant interleukin-6 protein in interleukin-6 (-/-) mice. Our results, therefore, suggest that mountain-cultivated ginseng acts through interleukin-6-dependent activation of Janus kinase 2/signal transducer activator of transcription 3/extracellular signal-regulated kinase signaling in order to reverse cognitive impairment caused by trimethyltin treatment.


Assuntos
Disfunção Cognitiva/tratamento farmacológico , Interleucina-6/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Panax , Fitoterapia , Animais , Disfunção Cognitiva/induzido quimicamente , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Interleucina-6/genética , Janus Quinase 2/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Panax/química , Panax/crescimento & desenvolvimento , Filogeografia , Fator de Transcrição STAT3/metabolismo , Compostos de Trimetilestanho , Regulação para Cima/efeitos dos fármacos
3.
Arch Toxicol ; 90(4): 937-53, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25895139

RESUMO

We investigated whether protein kinase C (PKC) is involved in trimethyltin (TMT)-induced neurotoxicity. TMT treatment (2.8 mg/kg, i.p.) significantly increased PKCδ expression out of PKC isozymes (i.e., α, ßI, ßII, δ, and ς) in the hippocampus of wild-type (WT) mice. Consistently, treatment with TMT resulted in significant increases in cleaved PKCδ expression. Genetic or pharmacological inhibition (PKCδ knockout or rottlerin) was less susceptible to TMT-induced seizures than WT mice. TMT treatment increased glutathione oxidation, lipid peroxidation, protein oxidation, and levels of reactive oxygen species. These effects were more pronounced in the WT mice than in PKCδ knockout mice. In addition, the ability of TMT to induce nuclear translocation of Nrf2, Nrf2 DNA-binding activity, and upregulation of γ-glutamylcysteine ligase was significantly increased in the PKCδ knockout mice and rottlerin (10 or 20 mg/kg, p.o. × 6)-treated WT mice. Furthermore, neuronal degeneration (as shown by nuclear chromatin clumping and TUNEL staining) in WT mice was most pronounced 2 days after TMT. At the same time, TMT-induced inhibition of phosphoinositol 3-kinase (PI3K)/Akt signaling was evident, thereby decreasing phospho-Bad, expression of Bcl-xL and Bcl-2, and the interaction between phospho-Bad and 14-3-3 protein, and increasing Bax expression and caspase-3 cleavage were observed. Rottlerin or PKCδ knockout significantly protected these changes in anti- and pro-apoptotic factors. Importantly, treatment of the PI3K inhibitor LY294002 (0.8 or 1.6 µg, i.c.v.) 4 h before TMT counteracted protective effects (i.e., Nrf-2-dependent glutathione induction and pro-survival phenomenon) of rottlerin. Therefore, our results suggest that down-regulation of PKCδ and up-regulations of Nrf2-dependent glutathione defense mechanism and PI3K/Akt signaling are critical for attenuating TMT neurotoxicity.


Assuntos
Glutationa/metabolismo , Hipocampo/efeitos dos fármacos , Síndromes Neurotóxicas/etiologia , Proteína Quinase C-delta/metabolismo , Compostos de Trimetilestanho/toxicidade , Acetofenonas/farmacologia , Animais , Benzopiranos/farmacologia , Relação Dose-Resposta a Droga , Hipocampo/metabolismo , Hipocampo/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Síndromes Neurotóxicas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteína Quinase C-delta/antagonistas & inibidores , Proteína Quinase C-delta/genética , Inibidores de Proteínas Quinases/farmacologia , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA