Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 552: 84-90, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33743352

RESUMO

BACKGROUND: Angiotensin II (Ang II), an important component of the renin-angiotensin system (RAS), plays a critical role in the pathogenesis of cardiovascular disorders. In addition, human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have been considered as a promising platform for studying personalized medicine for heart diseases. However, whether Ang II can induce the apoptosis of hiPSC-CMs is not known. METHODS: In this study, we treated hiPSC-CMs with different concentrations of Ang II [0 nM (vehicle as a control), 1 nM, 10 nM, 100 nM, 1 µM, 10 µM, 100 µM, and 1 mM] for various time periods (24 h, 48 h, 6 days, and 10 days) and analyzed the viability and apoptosis of hiPSC-CMs. RESULTS: We found that treatment with 1 mM Ang II for 10 days reduced the viability of hiPSC-CMs by 41% (p = 2.073E-08) and increased apoptosis by 2.74-fold, compared to the control group (p = 6.248E-12). MYOG, which encodes the muscle-specific transcription factor myogenin, was also identified as an apoptosis-suppressor gene in Ang II-treated hiPSC-CMs. Ectopic MYOG expression decreased the apoptosis and increased the viability of Ang II-treated hiPSC-CMs. Further analysis of the RNA sequencing (RNA-seq) data illustrated that myogenin ameliorated Ang II-induced apoptosis of hiPSC-CMs by downregulating the expression of proinflammatory genes. CONCLUSION: Our findings suggest that Ang II induces the apoptosis of hiPSC-CMs and that myogenin attenuates Ang II-induced apoptosis.


Assuntos
Angiotensina II/farmacologia , Apoptose/efeitos dos fármacos , Regulação da Expressão Gênica , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Miogenina/genética , Apoptose/genética , Células Cultivadas , Perfilação da Expressão Gênica/métodos , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/citologia , Miogenina/metabolismo , Fatores de Tempo
2.
Microsyst Nanoeng ; 8: 102, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36119377

RESUMO

3D microfluidic devices have emerged as powerful platforms for analytical chemistry, biomedical sensors, and microscale fluid manipulation. 3D printing technology, owing to its structural fabrication flexibility, has drawn extensive attention in the field of 3D microfluidics fabrication. However, the collapse of suspended structures and residues of sacrificial materials greatly restrict the application of this technology, especially for extremely narrow channel fabrication. In this paper, a 3D printing strategy named nanofiber self-consistent additive manufacturing (NSCAM) is proposed for integrated 3D microfluidic chip fabrication with porous nanofibers as supporting structures, which avoids the sacrificial layer release process. In the NSCAM process, electrospinning and electrohydrodynamic jet (E-jet) writing are alternately employed. The porous polyimide nanofiber mats formed by electrospinning are ingeniously applied as both supporting structures for the suspended layer and percolating media for liquid flow, while the polydimethylsiloxane E-jet writing ink printed on the nanofiber mats (named construction fluid in this paper) controllably permeates through the porous mats. After curing, the resultant construction fluid-nanofiber composites are formed as 3D channel walls. As a proof of concept, a microfluidic pressure-gain valve, which contains typical features of narrow channels and movable membranes, was fabricated, and the printed valve was totally closed under a control pressure of 45 kPa with a fast dynamic response of 52.6 ms, indicating the feasibility of NSCAM. Therefore, we believe NSCAM is a promising technique for manufacturing microdevices that include movable membrane cavities, pillar cavities, and porous scaffolds, showing broad applications in 3D microfluidics, soft robot drivers or sensors, and organ-on-a-chip systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA